Report on the ISOcat project

Marc Kemps-Snijders
Menzo Windhouwer
Peter Wittenburg
Sue Ellen Wright

January 8, 2009
Overview

1. DCR implementation
2. DCR organization
3. DCR output formats and applications
4. DCR neighbourhood planning
Overview

1. DCR implementation
 - ISOcat introduction
 - Demonstration & tutorial
 - Planning

2. DCR organization

3. DCR output formats and applications

4. DCR neighbourhood planning

January 8, 2009
ISOcat introduction

- ISOcat is
 - the reference implementation of ISO 12620:2009
 - the DCR implementation to be used by TC37
 - the successor to SYNTAX

- ISOcat provides
 - a state-of-the-art web user interface
 - a RESTful Application Programming Interface
ISOcat system architecture

- Core DCR services:
 - Access data
 - Manage system
 - Manage session
 - Control access

- Interfaces:
 - Web user interface
 - REST API
 - SOAP API

- Data repository:
 - Database Management System (DBMS)

- Reflections:
 - Client
 - Tool

- Administrator

January 8, 2009
ISOcat demonstration
What is missing?

- Standardization workflow
- Share DC(S)s
 - DC(S) locking mechanism
- Commenting DC(S)s
 - embed existing forum service
- Search private DCs
 - generate list of all accessible DCs for a user
- Advanced query interface
 - also to be used to implement a user’s own checking rules
- Storing user preferences
- ...

- Focus was/is on functionality, not yet on performance

January 8, 2009
ISOcat Planning-1

1. Fix SYNTAX import process
2. Actual migration from SYNTAX to ISOcat
 - Warn users and shut down SYNTAX
 - Get fresh data dump from SYNTAX
 - Actual data cleanup starts.
3. TDGs use ISOcat
 - TDG’s must validate existing data categories
 - Add missing functionality (e.g., sharing DC(S)s)
 - Report and fix any bugs
4. Supporting TDGs and implementing the standardization workflow
 - Finish ISO 12620:2009
5. Open up ISOcat to the general public

January 8, 2009
6. Initiate TDG reappointment process via SC 3 secretariat
7. Reappoint TDG members
 – Dependent on people signing up via the survey
8. Embedding ISOcat in its neighbourhood
 – Mirror sites
 – Open source environment
 – Other registries
ISOcat tutorial

• Caveats:
 – Firefox 3 has been the most stable, however, is poorly interactive with larger profiles/DCSs
 – In the past Internet Explorer 7 became instable after some time, however, I didn’t experience the problem for a while now
 – Don’t edit one Data Category concurrently (by logging in twice), as this may lead to lost updates
 – Concurrently generating large DCIF documents has been reported to be problematic (but we may try …)

• Problems or ideas:
 – Help facility will be setup in the form of a forum
 – File a bug report/feature request at:
 http://sourceforge.net/tracker/?group_id=244572
ISOcat tutorial
Discussion

• What functionality do you miss?
Overview

1. DCR implementation
2. DCR organization
 - TDG organization
 - Guidelines for DC specifications
 - Procedures for reviewing existing DC specifications
 - Procedures for adding new DC specifications
3. DCR output formats and applications
4. DCR neighbourhood planning

January 8, 2009
TDGs and activities

TDG 1: Metadata
TDG 2: Morphosyntax
TDG 3: Semantic Content Representation
Activity 1: Discourse Relations
Activity 2: Dialogue Acts
Activity 3: Referential Structures and Links
Activity 4: Logico-semantic Relations
Activity 5: Temporal Entities and Relations
Activity 6: Semantic Roles and Argument Structures

TDG 4: Syntax
TDG 5: Machine Readable Dictionary
TDG 6: Language Resource Ontology
TDG 7: Lexicography
TDG 8: Language Codes

TDG 9: Terminology
Activity 1: General Principles
Activity 2: Concept Modeling
Activity 3: ISO Terminology Entries
Activity 4: Benchmarking Terminology
Activity 5: Terminology Management
Activity 6: TBX
Activity 7: TBX-Basic
Activity 8: Other TBX/TMLs
Activity 9: Geneter
Activity 10: TMS

TDG 11: Multilingual Information Management
TDG 12: Lexical Resources
TDG 13: Lexical Semantics
TDG 14: Source Identification
TDGs and activities in ISOcat

- In ISOcat each TDG has been created
- Each TDG owns a profile with the same name
- For each Activity we can create
 - An (ad-hoc) group of experts
 - An (public) DCS (owned by the TDG)
 - An profile related to the TDG
TDG Authorization

• Current TDGs have been officially created by resolutions passed in their respective SC plenaries.

• Theoretically, TDGs could also be created at the TC level, although 12620 does not explicitly provide for this.

• Current TDGs shall be reconfirmed reconstituted after the Tilburg meetings.

• Members will be officially reappointed.
Ramifications

• TDG chairs **SHALL (MUST, HAVE TO!)** fill in a description for their TDGs in the TDG survey.

• Individuals need to indicate their continued interest in working with their assigned TDG so that their SCs will reappoint them.
Guidelines for DC specifications

• English “self name” and mnemonic identifier
 – DCR Guidelines
 – Set XML rules
 – XML best practices for names

• Definitions
 – ISO 704 best practices for writing rigorous definitions
 – ISO 12620 presentational style as compared to ISO 704 terminology style
 – Defining data category concepts
 – Avoiding tautologies within definitions and with respect to data element names
 – Coordinating definitions for shallow concept systems (closed DCs + their value domains)
 – Finding coordinate data categories in other TDGs and proposing harmonization strategies
Procedures for reviewing existing DCs

• Select small DCSs grouping closely related DC specifications together (such as a closed DC + the simple DCs in its value domain).
• Review the DC names to ensure that they following proper naming rules and guidelines. Enter the name in the English Language Section.
• Provide the obligatory +note in the English Language Section.
Reviewing existing DCs-2

• Check the definitions for:
 – Proper definition form
 – Consistency among simple DC definitions for simple DCs dependent on the same closed DC
 – Absence of internal tautology or repetition of terms from the DC name
 – Consistency with definitions for the same basic DC defined by other TDGs
 – Possibilities for harmonization among similar DC specifications

January 8, 2009
Switching from SYNTAX to ISOcat

• Import issues
 – Sometimes the type of the DC has to be guessed.
 • Lack of explicit field code for DC type in SYNTAX data
 • A DC typed as open may actually be a closed or a simple DC
 – Some “bogus” DC specs need to be weeded out.

• Cleanup process
 – Check result:
 • Most of the time the now mandatory English note is missing
 • Demote some of these errors?
 – Standardized DCs can’t be edited:
 • Reassign them to an expert, and fast track them later through
 the standardization process using change requests?
Discussion

• How do you envision the switch from SYNTAX to ISOcat?
Overview

1. DCR implementation
2. DCR organization
3. DCR output formats and applications
 - Embedding DC persistent identifiers (PIDs) in schemata and other resources
 - DCS-based templates for schemata/resources:
 • XML Schema/Relax NG, RDF(S)/OWL, ...
 • DCIF-based stylesheets: constructing ISOcat XSLT stylesheets plug-ins to generate other schema/resource templates, e.g. TBX-based templates
4. DCR neighbourhood planning
DC Persistent Identifiers

- The DCR provides ‘cool URIs’ to the data category specifications

 http://www.isocat.org/datcat/DC-1708

 For more information on cool URIs, see http://www.w3.org/Addressing/

- The Registration Authority of ISO 12620.2009 guarantees the persistence of these URIs.

- The non-mnemonic syntax of the URIs was chosen to meet the requirements of PID frameworks, and to prevent ‘semantic rot’.

- The ‘DC-’ prefix is used for private DCs, while the ‘ISO-DC-’ prefix is used for standardized DCs.
Data Category PIDs

• To be able to leverage the power of the DCR, linguistic resources should now be annotated with these DC PIDs.
 – In general the PIDs will be embedded in the schema of the resource.
 – The desired result is to ensure server-side resolution of the PID and delivery of the actual content of the referenced DC specification.
Embedding DC PIDs – built in

- Some schema languages have built-in facilities to embed the PIDs
 - ODD
    ```xml
    <elementSpec ident="pos">
      <equiv name="partOfSpeech"
      <!-- additional specifications here -->
    </elementSpec>
    
    - XCS (only complex DCs)
      ```xml
 <datCatSet>
 <termNoteSpec name="animacy"
 datcatId="http://www.isocat.org/dc/ISO-DC-78">
 <contents datatype="picklist" forTermComp="yes">
 animate inanimate otherAnimacy
 </contents>
 </termNoteSpec>
 </datCatSet>
      ```xml
Embedding DC PIDs – DC Reference

• The DC Reference XML vocabulary can be used to annotate schemas or resources without built in facilities:
  – Relax NG:
    
    ```xml
 <element name="identifier"
 dcr:datcat="http://www.isocat.org/datcat/DC-8">
 <data type="string"/>
 </element>
    ```
  – XML Schema:
    
    ```xml
 <xs:element name="identifier">
 <xs:annotation>
 <xs:appinfo>
 <dcr:datcat pid="http://www.isocat.org/datcat/DC-8"/>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
    ```
Embedding DC PIDs - RDF

- RDF has its own DC Reference statement:
  
  ```xml
 <rdf:Property rdf:about="http://www.isocat.org/ns/dcr.rdf#datcat">
 <rdfs:subPropertyOf rdf:resource="http://www.w3.org/2002/07/owl#sameAs"/>
 </rdf:Property>
  ```

- To be used to annotate a RDF resource:
  
  ```xml
 <rdf:Description rdf:about="http://example.com/app/myId">
 <dcr:datcat rdf:resource="http://www.isocat.org/datcat/DC-8"/>
 <rdfs:label xml:lang="en">Identifier</rdfs:label>
 </rdf:Description>
  ```

Note: no choice has been made yet for the resource to be a RDF class or property

January 8, 2009
To encourage the embedding of DC PIDs the DCR supports various export templates which can be instantiated for a specific DCS:

- DCIF (implemented)
- Basic RDF (implemented)
- Relax NG (planned)
- XML Schema (planned)
- OWL (planned)
- XCS (planned)
- ODD (planned)
- ...

Notice: in most cases this will result in a template which the user can download and has to complete further by putting the data categories in their application specific context.

Later ISOcat may support uploading an annotated schema and check its validity against the DCR (as long as the used patterns are recognizable).
Alternative RDF/OWL patterns

:headword
dcr:datcat <http://www.isocat.org/datcat/DC-258> ;
rdfs:label "head word"@en ;
rdfs:comment "A lemma heading a dictionary entry."@en ;
rdfs:label "lemma"@nl ;
rdfs:comment "Het eerste woord van een artikel in een woordenboek."@nl .

:partOfSpeech
dcr:datcat <http://www.isocat.org/datcat/DC-396> ;
rdfs:label "part of speech"@en ;
rdfs:comment "A category assigned to a word based on its grammatical and semantic properties."@en .

DCs become either a class or property:
:headword a rdfs:Class .
:partOfSpeech a rdf:Property ;
rdfs:domain :headword .

DCs become classes:
:headword a rdfs:Class .
:partOfSpeech a rdf:Class.
:hasPartOfSpeech a rdf:Property ;
rdfs:domain :headword 
rdfs:range :partOfSpeech .
:noun a partOfSpeech .
DCIF-based plug-ins

- The DCS export formats are based on the DCIF export of a DCS
- Some export formats may require the user to make some choices between various possible patterns:
  - OWL: will the DC be a property or a class?
  - OWL: how will the value domain of a complex DC be mapped?
  - XCS: on which level should the DC appear?
  - XSD/RNG: which name in which language to use for a value (simple DC)
  - ...
- A plug-in system is under development to support this, which will allow to store these choices together with a DCS
  - global and local (DC specific) properties
  - XSLT 1 or 2 stylesheets stored in ISOcat or accessed remotely
  - remote procedure call
  - ...

January 8, 2009
Requirements for DCR plug-ins

- Generated templates should faithfully represent the relationships in the DCR:
  - between complex and simple DCs (value domains)
  - (optionally?) between simple DCs (is-a relationships)
- When possible also constraints should be supported
  - embed constraints in a fitting rule language
    - OWL plug-in: SWRL
    - RNG: schematron
    - ...

January 8, 2009
Discussion

• What export formats do you miss?
Overview

1. DCR implementation
2. DCR organization
3. DCR output formats and applications
4. DCR neighbourhood planning
   – Mirrors of the TC37 DCR
   – Separate DCR instances (e.g., TBX meta-data categories)
   – Other types of registries (e.g., relation registries)
Mirrors of the TC37 DCR

• Several instances of ISOcat TC37 instance will be (virtually) sharing the same database
• Mirrors intend to be created at
  1. MPI - The Netherlands
  2. KAIST - Korea
  3. MITRE – US (?)
  4. BRANDEIS – US (?)
• The idea is that databases will be coupled using a PostgreSQL replication mechanism, e.g., Slony-I
Separate DCR instances

- ISOcat is open source and will be available on sourceforge
  - see [http://sourceforge.net/projects/isocat/](http://sourceforge.net/projects/isocat/)
- Using the software other DCR instances can thus be created
  - for other domains
  - for ‘meta data categories’
  - …
‘meta data categories’

• Definition of a data category:
  – result of the specification of a given data field

• In a data model you’ve ‘containers’ which contain ‘data fields’
  – UML: classes contain attributes
  – Relational databases: tables contain fields
  – Data-centric XML documents: inner nodes and leaf nodes
  – TBX: …

• Can you create data categories for the ‘containers’?
  – Are those complex data categories?
  – Are they open/closed/constrained?
  – If so what would be their data type?
  – Or do we need a separate data category type?
  – May some data categories function in some applications as ‘containers’ in others as ‘data fields’?

• Will people expect data categories for the ‘containers’?

• Do we keep the TC37 DCR ‘pure’?
  – And store the ‘container’ concepts in the Relation Registry …
Other registry types

Relation registries

Data category registries

Linguistic resources

MPI RR

Typological Database System RR

MPI DCR

ISO DCR

MPI archive

resource

TDS database

January 8, 2009
A relation registry contains relationships between two or more data categories.

These relationships can be stored in various ways:
- (fuzzy) equivalence
- resource schemas
- taxonomies
- ontologies
- ...

The registry can be populated manually, but also through some (machine learning) algorithm.

Registries may have different levels of trust.

The more semantic context the relationship encodes, the more effectively it can be utilized to determine semantic overlap.
Utilizing the registry network

- If there is a set of common APIs an agent can traverse the network to identify semantic overlap, or help an user to understand a resource
  - A researcher finds an interesting resource in the MPI archive, and asks the agent to find similar resources. The agent crawls the network:
    1. The set of MPI DCR DCs related to the MPI resource
    2. A RR provides equivalence of some of these DCs with DCs from the TC37 DCR
    3. A cluster of the TC37 DCs appear in a common semantic context specified in the TDS RR
    4. Resources within this context in the TDS thus have a high chance of being of interest to the researcher
Registry network

[Diagram showing relations between registries, data categories, and resource registries, with classes and properties such as 'tbx:hasPartOfSpeech', 'datcat:partOfSpeech', 'datcat:noun', 'datcat:verb', 'datcat:properNoun', and 'tbx:termNoteType']

January 8, 2009
Discussion

• How do you envision the (interaction in the) neighbourhood in which the DCR will operate?