Inclusion of Matter in Inhomogeneous Loop Quantum Cosmology

Daniel Martín de Blas
daniel.martin@iem.cfmac.csic.es
Instituto de Estructura de la Materia - CSIC

In collaboration with: Mercedes Martín-Benito and Guillermo A. Mena Marugán.

Sep 1st, 2011 - ERE2011 - UCM
Introduction

- Loop Quantum Cosmology (LQC)
 - Quantum approach for cosmological systems inspired by the Loop Quantum Gravity (LQG)
 - Satisfactory quantization of several homogeneous cosmological models
 - New quantum phenomenology \Rightarrow Resolution of initial singularity

- Hybrid quantization: Inhomogeneous models
 - Reduced model with only global constraints
 - It assumes that the most relevant effects of loop quantum geometry are in the homogeneous degrees of freedom
 - Combine LQC quantization for this homogeneous sector with a Fock quantization for inhomogeneities

- First model studied: vacuum Gowdy model with the three torus topology [Garay, Martín-Benito, Mena Marugán, '08]
Inclusion of a massless scalar field in the Gowdy \mathbb{T}^3 model
- Minimally coupled
- Same symmetries of the geometry

Motivation
- Inclusion of matter inhomogeneities in LQC.
- Study of more realistic models, closer to the observed universe.
- Scenario in which one can study some interesting features
 - Quantum effects of the inhomogeneities and the anisotropies on an FRW background.
 - Robustness of the Big Bounce scenario of LQC.
 - Changes in the evolution of the matter inhomogeneities due to quantum geometry effects.
 - *projection* to more symmetric quantum models.
Classical Settings

- Reduced phase space
 - Homogeneous sector: Bianchi I + homogeneous massless scalar field ϕ
 - Inhomogeneous sector: Matter inhomogeneities and gravitational waves (propagating in $\theta \in S^1$)

- Ashtekar-Barbero variables for Bianchi I
 - $su(2)$ connection: c^j; densitized triad: $p_j \quad i \in \{\theta, \sigma, \delta\}$

- Satisfactory Fock quantization of the inhomogeneities:
 - Unitary dynamics + Vacuum invariant under S^1 translations.
 - Parametrization of the matter φ and gravitational ξ inhomogeneities
 - Creation-annihilation variables (free m. s. f.): $\left(a_m^{(\alpha)*}, a_m^{(\alpha)} \right), \alpha = \xi, \varphi$

- Two global constraints remain:
 - Diffeomorphism constraint: $C_\theta = C_\theta^\xi + C_\theta^\varphi$
 - Densitized Hamiltonian constraint: $C = C_{\text{hom}} + C_{\text{inh}}$
Hybrid Quantization: Kinematics

Kinematical Hilbert space

\[\mathcal{H}_{\text{kin}} = \mathcal{H}^{\text{hom}}_{\text{kin}} \otimes \mathcal{H}^{\text{inh}}_{\text{kin}} = \mathcal{H}^{\text{BI}}_{\text{kin}} \otimes L^2(\mathbb{R}, d\phi) \otimes \mathcal{F}^\xi \otimes \mathcal{F}^\varphi \]

- **Fock Spaces** \(\mathcal{F}^\alpha \):
 - Creation-annihilation operators:
 - \(a_m^{(\alpha)*}, a_m^{(\alpha)} \rightarrow \hat{a}_m^{(\alpha)*}, \hat{a}_m^{(\alpha)} \)
 - n-particle states:
 \[|n^{\alpha}\rangle = |\ldots, n^{\alpha}_{-m}, \ldots, n^{\alpha}_m, \ldots\rangle, n^{\alpha}_m \in \mathbb{N}, \sum_m n^{\alpha}_m < \infty \]

- **\(\mathcal{H}^{\text{hom-mat}}_{\text{kin}} = L^2(\mathbb{R}, d\phi) \):**
 - Standard Schrödinger quantization:
 \[\hat{\phi}, \hat{p}_\phi = -i\hbar\partial_\phi \]

- **Bianchi I kinematical Hilbert space:**
 - LQC: Triads \(p_i \) and holonomies of connections \(N_{\mu_i}(c_i) \).
 - Improved dynamics: minimum length, \(\bar{\mu}_j \), in the holonomies.
 - \(\mathcal{H}^{\text{BI}}_{\text{kin}} = \text{span}\{|\lambda_\theta, \lambda_\sigma, v\rangle : \lambda_\theta, \lambda_\sigma, v \in \mathbb{R}\} \)
 - Discrete inner product:
 \[\langle \lambda_\theta, \lambda_\sigma, v | \lambda_\theta', \lambda_\sigma', v' \rangle = \delta_{\lambda_\theta, \lambda_\theta'} \delta_{\lambda_\sigma, \lambda_\sigma'} \delta_{vv'} \]
 - \(\hat{N}_{\pm\mu_i} \): Scale \(\lambda_i \) such that shift \(v \) in \(\pm 1 \);
 \[\hat{p}_j : p_j \propto \text{sgn}(\lambda_j)\lambda_j^2 \]
Operators on the inhomogeneous Hilbert space

- Diffeomorphism constraint operator

\[
\hat{C}_\theta = \sum_{m=1}^{\infty} m \left(\hat{X}_m^\xi + \hat{X}_m^\varphi \right), \quad \hat{X}_m^\alpha = \hat{a}_m^\dagger \hat{a}_m^\alpha - \hat{a}_{-m}^\dagger \hat{a}_{-m}^\alpha.
\]

\[
\hat{C}_\theta |n^\xi\rangle \otimes |n^\varphi\rangle \Rightarrow \sum_{m=1}^{\infty} m (X_m^\xi + X_m^\varphi) = 0, \quad X_m^\alpha = n_m^\alpha - n_{-m}^\alpha.
\]

- \(\mathcal{F}_p \equiv \) proper subspace of \(\mathcal{F}_\xi \otimes \mathcal{F}_\varphi. \)

- Operators in \(\hat{C}_{\text{inh}} \)

\[
\hat{H}_0 = \sum_{\alpha \in \{\xi, \varphi\}} \sum_{m=1}^{\infty} m \hat{N}_m^\alpha, \quad \hat{N}_m^\alpha = \hat{a}_m^\dagger \hat{a}_m^\alpha + \hat{a}_{-m}^\dagger \hat{a}_{-m}^\alpha.
\]

\[
\hat{H}_{\text{int}} = \sum_{\alpha \in \{\xi, \varphi\}} \sum_{m=1}^{\infty} \frac{1}{m} \left(\hat{N}_m^\alpha + \hat{a}_m^\dagger \hat{a}_{-m}^\alpha + \hat{a}_m^\alpha \hat{a}_{-m}^\dagger \right).
\]
Hamiltonian constraint operator $\hat{\mathcal{C}} = \hat{\mathcal{C}}_{\text{hom}} + \hat{\mathcal{C}}_{\text{inh}}$

- $\hat{\mathcal{C}}_{\text{hom}} = -\sum_{i\neq j} \sum_{j} \frac{\hat{\Theta}_i \hat{\Theta}_j}{16\pi G \gamma^2} - \frac{\hbar^2}{2} \left[\frac{\partial}{\partial \phi} \right]^2$, $i, j \in \{\theta, \delta, \sigma\}$.

- $\hat{\mathcal{C}}_{\text{inh}} = 2\pi \hbar |p_{\theta}| \hat{H}_0 + \hbar \left[\frac{1}{|p_{\theta}|^\frac{1}{4}} \right]^2 \left(\hat{\Theta}_\delta + \hat{\Theta}_\sigma \right)^2 \left[\frac{1}{|p_{\theta}|^\frac{1}{4}} \right]^2 \hat{H}_{\text{int}}$.

- $\hat{\Theta}_i = \hat{c}_i \hat{p}_i = i \pi G \hbar \sqrt{|v|} \left[(\hat{N}_{-2\mu_i} - \hat{N}_{2\mu_i}) \text{sgn}(p_i) + \text{sgn}(p_i) (\hat{N}_{-2\mu_i} - \hat{N}_{2\mu_i}) \right] \sqrt{|v|}$

Symmetric factor ordering:

- Triad operators: $v = 0$ states decouple (kin. singularity resolution)
- $\hat{\Theta}_j$ operators do not mix states with different sign of $\lambda_\theta, \lambda_\sigma, v$.

- $\tilde{\mathcal{H}}_{\text{kin}}^{\text{BI}}$: states such that $\lambda_\theta, \lambda_\sigma, v > 0 \Rightarrow \Lambda_\theta = \log \lambda_\theta, \Lambda_\sigma = \log \lambda_\sigma$.

Superselection sectors:

- in v: $v \in \mathcal{L}_\epsilon = \{\epsilon + 4k; \ k \in \mathbb{N}\}, \ \epsilon \in (0, 4]$
- in Λ_{α}: Given an initial $\Lambda_{\alpha}^* \Rightarrow \Lambda_{\alpha} = \Lambda_{\alpha}^* + z_\epsilon, \ z_\epsilon \in \mathbb{Z}_\epsilon$
Physical Hilbert space

- Action of the Hamiltonian constraint
 - The coefficients do not depend on Λ_σ
 - It is a difference equation in $v \Rightarrow$ evolution equation in v
 - The solutions can be determined by a set of initial data on the section of minimum homogeneous volume

- Physical Hilbert space $\mathcal{H}_{\text{phy}} \Leftrightarrow$ Hilbert space of initial data

\[\mathcal{H}_p = \mathcal{H}_{\text{phys}}^{\text{BI}} \otimes L^2(\mathbb{R}, d\phi) \otimes \mathcal{F}_p \]

- $\mathcal{H}_{\text{phys}}^{\text{BI}} \equiv$ Physical Hilbert space of Bianchi I
The model is symmetric under the interchange of σ and δ directions.

Classical solutions with local rotational symmetry (LRS)

General state: \[|\Psi\rangle = \sum_{\Lambda, \Lambda, \lambda} |\Psi(\Lambda, \Lambda, \lambda)\rangle \otimes |\Lambda, \Lambda, \lambda\rangle \]

Projection map:

\[|\Psi(\Lambda, \Lambda, \lambda)\rangle \rightarrow \sum_{\Lambda, \Lambda, \lambda} |\Psi(\Lambda, \Lambda, \lambda)\rangle \equiv |\psi(\Lambda, \lambda)\rangle \]

Quantum Gowdy Model \(\xrightarrow{projection} \) Quantum LRS-Gowdy Model

projection over Λ to get the isotropic Gowdy model fails

There is no classical inhomogeneous and isotropic solutions.
Conclusions

- Satisfactory quantization of the Gowdy T^3 model with linearly polarized gravitational waves and a massless scalar field.
- Hybrid quantization applied as in the vacuum model.
- Inclusion of the matter field:
 - Classical isotropic solutions of the homogeneous sector.
 - Two “copies” of inhomogeneities (mathematically speaking).
 - Matter inhomogeneities in LQC.
- Same results as in the vacuum model.
 - Standard Fock quantization of the inhomogeneities is recovered.
 - Classical singularity resolved at the kinematical level.
- Study of the projection to more symmetric systems.
- Possibility of analyzing the effects of the anisotropies and the inhomogeneities on a flat FRW model. (Work in progress)
Thanks for your attention!