Fine details of cortical and sub-cortical anatomy revealed in-vivo by ultra-high resolution quantitative T1 mapping

P.-L. Bazin¹, A. Schäfer¹, J. Dinse², C. Tardif², M. Waehnert³, E. Hashim³, L. Huber¹, S. Geyer¹, N. Bock³ and R. Turner¹

¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
²Otto-von-Guericke University of Magdeburg, Germany
³McMaster University, Hamilton, Ontario, Canada
bazin@cbs.mpg.de

Introduction
With the increased SNR of 7 Tesla MRI, the resolution of anatomical brain images acquired in-vivo can move toward resolutions well below the millimetre. We present here an imaging methodology pushing the limits of in-vivo anatomical quantitative MRI at 7T, which produces ultra-high resolution maps of T1 at an unprecedented isotropic resolution of 0.5 mm over the whole human brain.

Methods
Structural brain MR images were acquired for 12 healthy volunteers at 7T (Siemens Magnetom) using the MP2RAGE sequence (TR=5000 ms, TI1=900 ms, TI2=2750 ms) in three steps: first a sagittal whole-brain image was acquired at 0.7 mm isotropic resolution (with a GRAPPA acceleration factor of 2, 10:57 min), then two sagittal image slabs covering the left and right hemisphere separately were acquired at 0.5 mm isotropic resolution (no acceleration, 28:02 min).

The three images were merged as follows: first, the whole-brain image was normalized into MNI space at 0.4 mm isotropic resolution, then both hemisphere slabs were co-registered to the whole-brain image. The extracranial tissues were then removed with the CBS Tools [3] on the whole-brain image. The estimated quantitative T1 values of the slab with highest resolution and acquired second inversion signal were selected at each voxel in order to fuse the image data while retaining the full resolution of the original slabs.

To assess the quality of the T1 maps, we also acquired a whole brain B₀ in one subject [5] and simulated the effect of B₀ variation on the MP2RAGE ratio-image signal in Matlab based on analytical equations for the MP2RAGE [1,6] and MR tissue values at 7T [7]. Despite large B₀ variations, the estimated gray matter signal and intracortical contrast was very homogeneous.

Results

1. Single subject T1 anatomical details at 0.5 mm
2. Average T1 anatomy atlas at 0.4 mm

The three images were merged as follows: first, the whole-brain image was normalized into MNI space at 0.4 mm isotropic resolution, then both hemisphere slabs were co-registered to the whole-brain image. The extracranial tissues were then removed with the CBS Tools [3] on the whole-brain image. The estimated quantitative T1 values of the slab with highest resolution and acquired second inversion signal were selected at each voxel in order to fuse the image data while retaining the full resolution of the original slabs.

To assess the quality of the T1 maps, we also acquired a whole brain B₀ in one subject [5] and simulated the effect of B₀ variation on the MP2RAGE ratio-image signal in Matlab based on analytical equations for the MP2RAGE [1,6] and MR tissue values at 7T [7]. Despite large B₀ variations, the estimated gray matter signal and intracortical contrast was very homogeneous.

Conclusions
Ultra-high resolution quantitative mapping of T1 at 7 Tesla reveals a rich brain anatomy in individual subjects within reasonable acquisition times. The proposed approach yields high quality images at a resolution of 0.5 mm, fine enough to differentiate small nuclei and cortical areas. Combined with ultra-high resolution processing of anatodos, these images will provide fine-level anatomical information in-vivo to combine directly with functional activity in the same subject.

References

Acknowledgements: this work was partially supported by the Marie Curie IRG grant 276684 (HIRESBRAIN7T).