Negligible effect of cooking on nutritional value of Hadza tubers

Stephanie Schnorr¹, Koen Venema², Alyssa Crittenden³, Frank Marlowe¹

How much nutrition can humans obtain from wild plant foods and to what extent is cooking necessary in making these nutrients available during digestion?

Resource acquisition strategies of hunter gatherers involve obtaining sufficient calories that satisfy requirements of essential nutrition. Many models of human dietary ecology in evolution speculate on whether these needs could be met by human foragers in East Africa from meat, plant foods or both (1). A reliance on plant foods often implies the need for cooking to breakdown physical and chemical barriers in the plant so a human consumer can access the nutrition commensurate to what was expended in acquisition (2). The Hadza hunter-gatherers of East Africa offer a unique opportunity to test the bioavailability of nutrition in the wild tubers they consume year round (3).

Introduction and Background

Hadza ecology (4):
- The Hadza hunter-gatherers are modern foragers living in northern Tanzania along the eastern side of the Rift Valley
- Maintain a foraging subsistence lifestyle for >90% of diet
- Hadza women target tubers
- Available year round
- Consumed both raw and roasted

Questions:
- What is the bioavailability of nutrition?
- What is the relevance of brief roasting?

Tuber properties (5):
- High fiber
- Moderate to low starch by fresh weight
- High moisture (70-90%)

Roasting practices (6):
- 3-30 mins, average 5-7 mins
- Open high-flame fire
- Larger tubers roasted in sections

Consumption (5):
- Peeled and bite-size sections cut
- Chewed up to 3 mins
- Water or “quid” of fiber expected

Methods

Procedure:
1. Simulate roasting: 5 mins on open fire
2. Peel and remove quids to extract edible fraction
3. Submit to in-vitro digestion
4. Dialysate analyzed for glucose (amino acids (protein) below detection)

TNQ gastro-Intestinal Model (TIM)-1 stomach and small intestine

Full replica of the stomach and small intestine (7). The meal is inserted directly into the stomach and digested for 6 hours over a preset rate. Absorption of metabolic products (sugars and amino acids) through semi-permeable hollow-fiber membranes (5 kDa) are measured in the “dialysate”.

Notable observations:
- Low starch by wet volume
- High simple sugars make raw consumption feasible and cooking unnecessary
- High fiber and pectin
- Fiber increases gut passage time
- Both upper and lower-gut digestion enabled

Alternative reasons for brief roasting:
- Softens food, faster peeling
- Ease of consumption for children
- Slower gut passage, longer satiation
- Preserve moisture in tubers
- Brief roasting may preserve vitamins (TBD)

Summary:
The results indicate high in-situ variation in nutrition availability with low impact from brief roasting.

Two strategies emerge:
1. the forager must select the highest quality tuber
2. roasting gains a slight improvement but is not essential, raw consumption is reasonable in certain settings.

We posit that roasting is a key communal activity, reinforces social bonding and distributes resource cost and therefore should be prioritized in mixed group settings. We also stress the importance of activating the whole gut in digestion. The upper gut digests and absorbs simple sugars and starch while the lower gut receives fermentable polysaccharides and provides further metabolic products to the host (SCFAs).

Conclusions

References

8. Acknowledgments

We are grateful for the cooperation of the Hadza of Tanzania and the help of Mike Pessolano, Michelle, and various Hadza foragers, without whose help this research would not be possible. We also wish to thank the Hadza people who kindly provided us with support and information during the course of this research. We would like to acknowledge the help of the Hadza health program for conducting the research. We would also like to acknowledge the help of the Hadza rubber, Web site, and other resources for their cooperation. We also wish to acknowledge the help of the Hadza people for permitting our research.