Print Exposure and Online Sentence Processing Among Older Adults
Brennan R. Payne, Xuefei Gao, and Elizabeth A. L. Stine-Morrow
Beckman Institute for Advanced Science and Technology & Department of Educational Psychology
University of Illinois at Urbana-Champaign

Rationale

• Reading is an important activity for maintaining intellectual capacity and exercising cognitive abilities across the lifespan.
• Studies have shown that print exposure (PE), the degree of habitual engagement in reading, can explain the positive age-related relationships with crystallized abilities such as vocabulary and declarative knowledge among older adults (Stanovich et al., 1996).
• Higher PE is associated with facilitation in word-level processes among both child and younger adult readers (e.g., Chateau & Jared, 2000). However, less is known about the role of PE in the continued building of skilled reading over the life span.
• In the current study, we examine the effects of PE on online measures of word decoding, lexical access, and textbase integration among older readers.

Participants

• 150 community dwelling older adults (Mean age = 72, Range = 64-92).

Measures and Procedure

• Exposure to Print: The Author Recognition Test (ART; Stanovich & West, 1989). Participants were given a checklist with authors and foils, and asked to select the authors. The overall score is calculated by subtracting the number of foils identified from the number of authors correctly identified.
• Verbal Ability: The ETS-Advanced Vocabulary and Extended Range Vocabulary Test (Ekstrom et al., 1976). For each item, participants are asked to choose the correct synonym of a target word from a list of five possible words.
• Verbal Working Memory (vWM): The loaded reading span task (Stine & Hindman, 1994). Participants read a series of sentences for immediate true/false judgments, and then reported the last word of each sentence in sets of increasing size. The score was the maximum set size with accurate recall.
• Reading Task: Sets of 24 two-sentence passages were presented to each participant to read word-by-word in an individual laboratory session.

Results

• Advancing age was associated with marginally lower vWM and lower levels of PE. PE was highly related to both measure of verbal ability as well as education, and vWM (see Table 1).
• In subsequent analyses, the two vocabulary measures were combined into one verbal ability composite for each subject (α = .89).

Table 1. Correlations Between Age, Education, Verbal Working Memory, Verbal Ability, and Print Exposure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Age</th>
<th>Education</th>
<th>Verbal Working Memory</th>
<th>Verbal Ability</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M (SE)</td>
<td>72.0 (6.5)</td>
<td>15.40 (.22)</td>
<td>3.92 (.38)</td>
<td>13.63 (.91)</td>
<td>5.6</td>
</tr>
</tbody>
</table>

• Word-by-word reading times were submitted to analysis using linear mixed effects (LME) models with cross-random effects for subjects and item variance and their interactions (see Fig.1) without biased estimates (Quene & van den Bergh, 2007).

Table 2. Estimates and Standard Errors From Cross Random Effects Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Intercept</th>
<th>ART</th>
<th>Vocabulary</th>
<th>VocabAdd</th>
<th>Log (Word Frequency)</th>
<th>Number of Syllables</th>
<th>Clause Wrap-Up</th>
<th>New Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>6.49 (0.68)</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Model 2</td>
<td>6.50 (0.67)</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Model 3</td>
<td>6.49 (0.68)</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

• We entered predictors of reading time hierarchically in 3 models. Predictors were centered. Reading times were log transformed to correct for skew. Estimates and standard errors for each model are presented in Table 2.

• In Model 2, we added cross effect interactions between PE and item-level predictors of reading time: high levels of PE engendered more efficient orthographic decoding and lexical access and more effort to process of new concepts and increased intrasentence boundaries; Stine-Morrow et al., 2008).

Figure 1. Schematic of LME Models

Figure 2. Partial Effects Plots of Interactions in Model 3 at Conditional Levels of PE (Low PE = Mean - 1SD; Mean PE; High PE = Mean + 1SD).

Conclusions

• Our findings suggest that habitual engagement with reading is related to an effective allocation policy (see Stine-Morrow et al., 2008) among older adults.
• Older readers with higher levels of PE were facilitated in word level processing. This freed up resources to be available for higher level textbase processes (Long, Johns, & Morris, 2007) such as processing of new concepts and improving skilled reading, even among older readers.
References


