Parametric representation of rank d tensorial group field theory: Abelian models with kinetic term $\sum_s |p_s| + \mu$

Joseph Ben Geloun$^{1,2,a)}$ and Reiko Toriumi$^{3,b)}$

1Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Mühlenberg 1, 14476 Potsdam, Germany
2International Chair in Mathematical Physics and Applications, ICMPA-UNESCO Chair, University of Abomey-Calavi, 072B.P.50 Cotonou, Republic of Benin
3Centre de Physique Théorique, CNRS-Luminy, Aix-Marseille Université, Case 907, 13288 Marseille, France

(Received 8 March 2015; accepted 18 August 2015; published online 15 September 2015)

We consider the parametric representation of the amplitudes of Abelian models in the so-called framework of rank d tensorial group field theory. These models are called Abelian because their fields live on copies of $U(1)^D$. We concentrate on the case when these models are endowed with particular kinetic terms involving a linear power in momenta. A new dimensional regularization is introduced for particular models in this class: a rank 3 tensor model, an infinite tower of matrix models ϕ_{2n} over $U(1)$, and a matrix model over $U(1)^2$. We prove that all divergent amplitudes are meromorphic functions in the complexified group dimension $D \in \mathbb{C}$. From this point, a standard subtraction program yielding analytic renormalized integrals could be applied. Furthermore, we identify and study in depth the Symanzik polynomials provided by the parametric amplitudes of generic rank d Abelian models. We find that these polynomials do not satisfy the ordinary Tutte’s rules (contraction/deletion). By scrutinizing the “face”-structure of these polynomials, we find a generalized polynomial which turns out to be stable only under contraction. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929771]

I. INTRODUCTION

Tensorial group field theories (TGFTs) provide a background independent framework to quantum gravity which is intimately based on the idea that the fundamental building blocks (quanta) of space-time are discrete.$^{1-9}$ Within this approach, the fields are rank d tensors labeled by abstract group representations. From such a discrete structure, one dually associates tensor fields with basic $d-1$ dimensional simplexes and their possible interactions with d dimensional simplicial building blocks. At the level of the partition function, the Feynman diagrams generated by the theory represent discretizations of a manifold in d dimensions. Thus, in essence, TGFTs which randomly generate topologies and geometries in covariant and algebraic ways can be rightfully called quantum field theories of spacetime. One of the main efforts in this research program is to seek what types of phases the theory exhibits. More to the point, one may ask if any of these phases give our geometric universe described by general relativity from the pre-geometric cellular-complex picture that the bare theory gives.10 This question is accompanied by a further suggestion that the relevant phase corresponds to a condensate of the microscopic degrees of freedom.1,5 Note that this question has found a partial answer in Refs. 11 and 12.

Because they are field theories, TGFTs can certainly be scrutinized using several different lenses. In particular, one of the main successes of quantum field theory which is a renormalization group analysis turns out to have a counterpart in TGFTs. We recall that renormalizability of any
quantum field theory is a desirable feature since it ensures that the theory survives after several energy scales. In fact, so far, all known interactions of the standard model are renormalizable. Quantum field theory predictions rely on the fact that, from the Wilsonian renormalization group point of view, the infinities that appear in the theory should locally reflect a change in the form of the theory.\(^{13}\) In particular, if TGFTs are to describe any physical reality like our spacetime at a low energy scale, one is certainly interested in probing the flow of this theory. The renormalization program suitably provides a mechanism to study the flow of a theory with respect to scales and also might lead to predictions. Within TGFTs, this renormalization program can be addressed in several ways and, indeed, has known important recent developments.\(^{14–31}\) The simplest setting in which one can think within TGFTs is given in purely combinatorial terms as tensor models.

Tensor models, originally introduced in Refs. 32–36, especially enjoy the knowledge of their lower dimensional cousins: matrix models.\(^{37}\) These latter models are nowadays well developed and understood through rich statistical tools.\(^{38–43}\) Specifically, the Feynman integral of matrix models generates ribbon graphs organized in a \(1/N\) (or genus) expansion.\(^{38}\) In short, this statistical sum is analytically well controlled. It is only recent that the notion of large \(N\) expansion was extended to tensor models\(^ {44–46}\) (for however the class of colored models\(^ {47–49}\)). From this point, important progresses have been unlocked\(^ {50–64}\) and a renormalization program for tensor models uncovered (for a review, see Refs. 8 and 27).

Back to renormalization and its applicability to TGFTs, one notes that, in anterior works, thriving efforts were developed on the so-called multi-scale renormalization.\(^ {13}\) It is also worthy and advantageous to understand how other known tools in renormalization (like the Polchinski equation or Functional Renormalization Group methods\(^ {9,65,66}\)) can shed light and even convey more insights into the present class of models and thereby enrich their Physics. Among these well-known renormalization procedures, there is the celebrated dimensional regularization.

In ordinary quantum field theory, dimensional regularization is an important scheme as it delivers finite (regularized) amplitudes and respects, at the same time, the symmetries of gauge theories (preserves field equations and Ward identities).\(^ {67,68}\) Of course, in our present class of non-local models, there exists a notion of invariance but it is an open issue to show that their associated Ward identities\(^ {30}\) will be preserved or not after the dimensional regularization and its subtraction program introduced in the present work. Nevertheless, a dimensional regularization is a very interesting tool that one may want to have in TGFTs. It allows one to understand the fine structure of the amplitudes: it makes easy to locate the divergences in any amplitude as it picks out the divergences in the form of poles and exhibits meromorphic structure of these integrals.

- As a first upshot of the present paper, and for a particular class of TGFT models defined over Abelian groups \(U(1)^8\), we show that a dimensional regularization procedure can be defined using the dimension \(\delta\). Under their parametric form and by complexifying the group dimension \(\delta \rightarrow D \in \mathbb{C}\), the amplitudes are proved to be meromorphic functions in \(D\). A subtraction operator can be defined at this stage and, even though not fully carried, we conjecture that it will provide finite analytic amplitudes in \(D\). Theorems 1 and 2 contain our main results on this part. During the analysis, it appears possible to introduce another complex parameter associated with the rank \(d\) of the theory. Although, we did not address this issue here, it is a new and an interesting fact that another type of regularization (that one can call a ‘rank regularization’) could be introduced using the parametric amplitudes in tensor models. This will require further investigations elsewhere.

The parametric representation of Feynman amplitudes has several other interesting properties. For instance, it allows one to read off the so-called Symanzik polynomials. In standard quantum field theory\(^ {69}\) and even extended to noncommutative field theory,\(^ {70}\) these polynomials satisfy particular contraction/deletion rules like the Tutte polynomial, an important invariant in graph theory.

- As a second set of results, we sort the structure of the “Symanzik polynomials” associated with the parametric amplitudes of any rank \(d\) Abelian models (not only the ones assumed to be renormalizable). We show that these polynomials fail to satisfy a contraction/deletion rule. Under specific assumptions, the first Symanzik polynomial that we found can be mapped onto the invariant by Krajewski and co-workers.\(^ {70}\) As an interesting feature of these polynomials, we will observe that they respect a peculiar “face”-structure of the tensor graph. A way to stabilize the polynomials under some recurrence rules is to fully consider this structure and to enlarge the space...
under which one must consider the recurrence. Given a graph \(G \), we will consider its so-called set of internal faces \(F_{\text{int}} \) (these are closed loops). The new invariant that we construct is defined over \(G \times \mathcal{P}(F_{\text{int}})^{\times 2} \times \{\text{od}, \text{ev}\}^{\times 2} \), where \(\mathcal{P}(F_{\text{int}}) \) is the power set of \(F_{\text{int}} \) and \(\{\text{od}, \text{ev}\} \) is a parity set. The new invariant is stable only under contraction operations and this result is new to the best of our knowledge. Theorems 3 and 4 embody our key results on this part.

This paper is organized as follows. Section II covers definitions and terminologies associated with important graph concepts used throughout the text, for the rank \(d \geq 3 \) colored tensor graphs and the rank \(d = 2 \) ribbon graphs. For notations closer to our discussion, we refer to the survey given in Section II in Ref. 27. Section III presents the models including rank \(d = 2 \) matrix and \(d \geq 3 \) tensor models that we shall study. The parametric representation of the amplitudes and the new Symanzik polynomials \(U_{\text{od/ev}} \) and \(\tilde{W} \) are presented. In Section IV, we develop dimensional regularization of particular models presented in Section III. The proof of the amplitude factorization/expansion (which is necessary for showing that the pole extraction is equivalent to adding counterterms of the form of the initial theory) and the exploration of meromorphic structure of the amplitudes in the complex dimension parameter \(D \) are undertaken. Then, the subtraction operator and the procedure which could lead to renormalized amplitudes is outlined. Section V explores the properties of the newly found Symanzik polynomials \(U_{\text{od/ev}} \) and \(\tilde{W} \). Then, we identify a polynomial \(U^{\epsilon, \bar{\epsilon}} \) which is an extended version of \(U_{\text{od/ev}} \) with a stable recurrence relation based only on contraction operations on a graph. Section VI is devoted to a summary and perspectives of the present work.

II. STRANDED GRAPHS

Before starting the study of the parametric amplitudes associated with Feynman graphs in tensor models, it is worthy fixing the basic definitions of the type of graphs we will be analyzing in these models.

In the following, we shall give a survey of the main ingredients of two types of graphs:
- the so-called rank \(d > 2 \) colored tensor graphs which we will describe only from the field theoretical point of view (for a mathematical definition, we will refer to Ref. 71);
- ribbon graphs with half-ribbons also called rank 2 graphs in this paper. These graphs are quite well understood and still intensively investigated. For a complete definition of ribbon graphs, we will refer to one of the following standard references 72–76 (the last reference offers an up-to-date survey). The case of ribbon graphs with half-edges or half-ribbons and their relation to Physics, the work by Krajewski and co-workers 70 is seminal. However, our notations are closer to Ref. 77.

A. Rank \(d > 2 \) colored stranded graphs

Colored tensor models 47 expand in perturbation theory as colored Feynman graphs endowed with a rich structure. From these colored tensor graphs, one builds another type of graphs called uncolored. 55–59 These graphs will form the useful category of graphs we will be dealing with at the quantum field theoretical level. In this section, we provide a lightning review of the basic definitions of objects in the above references. Most of our illustrations focus on the rank 3 situation which is already a nontrivial case mostly discussed in our Secs. IV and V; we invite the reader to more illustrations in Ref. 27.

1. Colored tensor graphs

In a rank \(d \) colored tensor model, a graph is a collection of edges or lines and vertices with an incidence relation enforced by quantum field theory rules. In such a theory, we call graph a (rank \(d \)) colored tensor graph. This graph has a stranded structure described by the following properties:
- each edge corresponds to a propagator and is represented by a line with \(d \) strands (see Fig. 1). Fields \(\varphi \) are half-lines with the same structure;
- there exists a \((d + 1) \) edge or line coloring;
FIG. 1. A stranded propagator or line in a rank d tensor model.

- each vertex has coordination or valence $d + 1$ with each leg connecting all half-lines hooked to the vertex. Due to the stranded structure at the vertex and the existence of an edge coloring, one defines a strand bi-coloring: each strand leaves a leg of color a and joins a leg of color b, $a \neq b$, in the vertex;

- there are two types of vertices, black and white, and we require the graph to be bi-partite. Illustrations on rank $d = 3, 4$ white vertices are depicted in Fig. 2. Black vertices, on the other hand, are associated with barred labels and drawn with counterclockwise orientations.

We may use a simplified diagram which collapses all the stranded structure into a simple colored graph. The resulting graph still captures all the information of the former. Fig. 3 illustrates an example of such a collapsed graph.

All rank d tensor graphs (without color) have a nice dual geometrical interpretation. The rank d vertex determines a d simplex and the fields represent $(d-1)$ simplexes. A generic graph is therefore a d dimensional simplicial complex obtained from the gluing of d simplexes along their boundaries. The key role of colors in tensor graphs was put forward in Ref. 49. These colored graphs are dual to simplicial pseudo-manifold in any dimension d.

2. Open and closed graphs

A graph is said to be closed if it does not contain half-lines (also called half-edges). It is open otherwise. One refers such half-lines to external legs representing external fields in usual field theory. We give an example of a rank 3 open graph in Fig. 4.

3. p-bubbles and faces

Appearing as one of their most striking features, colored tensor graphs in any rank d have a homological cellular structure. A p-bubble is a maximally connected component subgraph of the collapsed colored graph associated with a rank d colored tensor graph, with p the number of colors of the edges of that subgraph. For example, a 0-bubble is a vertex, a 1-bubble is a line. A 2-bubble is called a face. Faces can be viewed in the simplified colored graph as cycles of edges with alternate colors, see Fig. 5. They will play a major role in all of our next developments.

We have few remarks:

- In the full expansion of the colored graph using strands, a face is nothing but a connected component made with one strand. The color of strands alternates when passing through the edges which define the face.

- A p-bubble is open if it contains an external half-line, otherwise it is closed. For instance, there exist three open 3-bubbles (b_{012}, b_{013}, and b_{023}) and one closed bubble b_{123} in the graph \mathcal{G} in Fig. 4.

FIG. 2. Two vertices in rank $d = 3$ (left) and $d = 4$ (right) colored models. Strands have a bi-color label.
4. Jackets

Jackets are ribbon graphs coming from a decomposition of a colored tensor graph. Following Refs. 46 and 78, a jacket in rank d colored tensor graph is defined by a permutation of $\{1, \ldots, d\}$, namely, $(0, a_1, \ldots, a_d)$, $a_i \in [1, d]$, up to orientation. One divides the $(d + 1)$ valent vertex into cycles of colors using the strands with color pairs $(0a_1), (a_1a_2), \ldots, (a_{d-1}a_d)$ and proceeds in the same way with rank d edges. Some jackets are illustrated in Fig. 6. Open and closed jackets follow the standard definition of having or not having external legs, respectively.

5. Boundary graphs

Tensor graphs with external legs are dual to simplicial complexes with boundaries. This boundary itself inherits a simplicial (even homological) complex structure in the context of colored models. From the field theoretical perspective, we are interested in graphs with external legs (external legs allow us to probe events happening at a much higher scale as compared to the scale of their own), therefore in the present context, in simplicial complexes with boundaries.

One can map the boundary complex of a rank d colored graph to a tensor graph with lower rank $d-1$ endowed with a vertex-edge coloring. The procedure for achieving this mapping is known as “pinching” (or closing of open tensor graphs): one inserts a d-valent vertex at each external leg of a rank d open tensor graph. The boundary $\partial \mathcal{G}$ of rank d colored tensor graph \mathcal{G} is then a graph

- the vertex set of which is one-to-one with the set of external legs of \mathcal{G} and is the set of d-valent vertices inserted;
- the edge set of which is one-to-one with the set of open faces of \mathcal{G}.

As a direct consequence, the boundary graph has a vertex coloring inherited from the edge coloring and has an edge bi-coloring coming from the bi-coloring of the faces of the initial graph. See Fig. 7 as an illustration in a rank 3 colored tensor graph. Note, for example, that in rank $d = 3$, the boundary of a rank 3 colored tensor graph is a ribbon graph.

6. Degree of a colored tensor graph

Organizing the divergences occurring in the perturbation series of rank d colored tensor graphs, one introduces the following quantity called degree of the colored tensor graph \mathcal{G}:

$$\omega(\mathcal{G}) = \sum_J g_J,$$

where g_J is the genus of the jacket J and the sum is performed over all jackets in the colored tensor graph \mathcal{G}. For an open graph, one might use instead pinched jackets \hat{J} for defining the degree.

FIG. 4. A rank 3 open colored tensor graph and its compact representation with half-edges.
FIG. 5. Deleting colors 0 and 3 in the graph on the left, one obtains a 2-bubble, the face f_{12} (right).

graph for which $\omega(G) = 0$ is called a “melon” or “melonic” graph.51 This quantity is at the core of the extension of the notion of genus expansion (t’Hooft large N expansion in matrix models) now for colored tensor models. It is at the basis of the success of finding a way to analytically resum the perturbation series in colored tensor models at leading order and even beyond.51–64

7. Contraction and cut of a stranded edge

As in ordinary graph theory, an edge can be regular or special (bridge and loop). We will consider the following operations on a tensor graph.

- The \textit{cut operation} on an edge is intuitive: we replace a stranded line by two stranded half-lines on the vertex or vertices where the edge was incident (see Fig. 8). Importantly, we respect the bi-coloring of strands during the process. We denote $G \vee e$ the resulting graph after cutting e in G. We realize immediately that cutting edges has a strong effect on the boundary graph.

- The \textit{contraction of a non-loop} rank d stranded edge is similar to ordinary contraction in graph theory. The important point is, once again, to respect the stranded structure. The contraction of an edge e incident to v_1 and v_2 is performed by removing e and its end vertices and introducing another vertex containing all the remaining edges incident to v_1 and v_2 in such a way to conserve their stranded structure and incidence relations (see Fig. 9). Starting from a colored graph, such an operation immediately leads to a non-colored graph. However, the stranded structure and stranded bi-coloring are preserved. These are the important ingredients that we need in our next developments.

A colored graph does not have loop edges (a loop edge is incident to the same vertex). Thus, our initial class of rank d colored tensor graphs does not generate any loops. However, after contractions of regular edges, it is easy to imagine that one might end up with configurations with loops from a generic graph. Since we will be interested in situations where such configurations arise and where we must further perform contractions, a definition of loop contraction is required. In Ref. 71, such a contraction has been defined in the case of a trivial loop (After the contraction of a tree of regular edges, we always end up with a generalized stranded rosette graph. In ribbon graphs, a loop on a rosette is called trivial if it does not interlace with any other loops. In stranded graphs, one might impose further conditions categorized by possible consequences of the contraction of these loops before calling them trivial). We provide here a straightforward generalization of this definition which turns out to be useful for our following study. For simplicity, we restrict to the rank 3 colored case, and the general situation can easily be recovered from this point.

FIG. 6. Two open jackets, J_{0123} (left) and J_{0132} (right) of the graph in Fig. 4. The subscripts stand for a given color cyclic permutation used to decompose the colored tensor vertex in another-ribbon like vertex.
FIG. 7. The boundary graph ∂G of the graph G of Fig. 4. ∂G (graph in the middle) is obtained by inserting a $d = 3$ valent vertex at each external leg in G and erasing the closed internal faces. ∂G has a rank $d - 1 = 2$ structure (most right).

FIG. 8. Cut of a stranded line e.

FIG. 9. Contraction of a stranded line β.

FIG. 10. A loop in a graph G and its bi-colored strands $i = 1, 2, 3$. After contraction, in the graph G/e, the sectors α_i are joined with the β_i's in the resulting vertex.

- The contraction of a loop stranded edge: Consider a loop edge e, and its bi-colored strands called $i = 1, 2, 3$. Call α_i and β_i's, $1 \leq i \leq 3$, the points where the strands connect other half-lines (or legs) of the vertex (see Fig. 10). We write $1 \leq i \leq 3$, because it may happen that the strand i does not exit at another leg of the vertex but directly becomes a loop. Note that the α_i's (and β_i's) are all pairwise distinct by definition of a bi-colored stranded vertex. The contraction of e incident to a vertex v in G is performed by removing e and directly connecting all α_i to β_i with the same color index. Several situations may occur. The graph might split if the resulting parts of the vertex form themselves vertices with their incident edges (see Fig. 11). If there is a closed strand passing through e and v only, the result graph, by convention, contains a disc issued from this closed strand (see Fig. 12). We will see that this procedure will extend the similar contraction in the case of ribbon graphs.

The above contraction has been called “soft” in Ref. 71 as opposed to the so-called “hard” contraction. The hard contraction follows the same rules of the soft contraction but whenever a disc graph (without any edges) is generated during the procedure we remove it from the resulting graph. Note that hard contraction cannot be distinguished from soft contraction on non-loop edges and even on specific loops which do not contain these particular closed strands. Hard contraction is useful in the quantum field theory setting. However, during the study of invariant polynomials on
FIG. 11. A loop contraction: black sectors represent some parts of the graph where the α_i and β_i are connected. After contraction, the vertex splits.

FIG. 12. A loop contraction: the strand 3 is closed and does not pass by any other edges. After contraction, \mathcal{G} splits and \mathcal{G}/e contains a disc.

graph structures, considering soft contraction which preserves the number of faces becomes capital to achieve all main results and recurrence relations.

B. Ribbon graphs

Let us define the type of graphs for the rank $d = 2$ case that will retain our attention.

Definition 1 (Ribbon graphs). A ribbon graph \mathcal{G} is a (not necessarily orientable) surface with boundary represented as the union of two sets of closed topological discs called vertices \mathcal{V} and edges \mathcal{E}. These sets satisfy the following:

- Vertices and edges intersect by disjoint line segment,
- each such line segment lies on the boundary of precisely one vertex and one edge,
- every edge contains exactly two such line segments.

In the following, when no ambiguity can occur, we might simply call ribbon graphs as graphs.

Ribbon edges can be twisted or not and this induces consequences on the orientability and genus of the ribbon graph as a surface.

Defining the class of ribbon graphs, we take the point of view of Bollobás and Riordan. Arbitrary cyclic orientation ($+$ or $-$) signs on vertices are fixed, and then one assigns to each ribbon edge an orientation, $+$ or $-$, according to the fact that the orientation of its end-vertices across the edge is consistent or not, respectively. Note that flipping a vertex (or reversing its cyclic ordering) has the effect of changing the orientation of all its incident edges except its “loops” (ribbon edges incident to the same vertex). Two ribbon graphs are isomorphic if there exist a series of vertex flips composed with isomorphisms of cyclic graphs which transform one into the other. Now, according to the class of ribbon graphs, only the parity of the number of twists matters.

The notions of regular ribbon edges and bridges are direct (these can be also called non-loop edges). The notion of loop in ribbon graphs must be clarified. A loop is a ribbon edge incident to the same vertex. In particular, we say that a loop e at a vertex v of a ribbon graph \mathcal{G} is twisted if $v \cup e$...
forms a Möbius band as opposed to an annulus for an untwisted loop. A loop e is called trivial if there is no cycle in \mathcal{G} which can be contracted to form a loop e' interlaced with e.

An edge is called special if it is either a bridge or a loop. A ribbon graph is called a terminal form when it contains only special edges.

Let us first address the notion of contraction and deletion for ribbon edges: Let \mathcal{G} be a ribbon graph and e one of its edges.

- We call $\mathcal{G} - e$ the ribbon graph obtained from \mathcal{G} by deleting e.
- If e is not a loop and is positive, consider its end-vertices v_1 and v_2. The graph \mathcal{G}/e obtained by contracting e is defined from \mathcal{G} by replacing e, v_1, and v_2 by a single vertex disc $e \cup v_1 \cup v_2$. If e is a negative non-loop, then untwist it (by flipping one of its incident vertex) and contract. Both contractions are illustrated in Fig. 13.
- If e is a trivial twisted loop, contraction is deletion: $\mathcal{G} - e = \mathcal{G}/e$. The contraction of a trivial untwisted loop e is the deletion of e and the addition of a new connected component vertex v_0 to the graph $\mathcal{G} - e$. We write $\mathcal{G}/e = (\mathcal{G} - e) \sqcup \{v_0\}$ (see Fig. 14).
- If e is general loop (not necessarily trivial), the definition of a contraction becomes a little bit more involved. One way to address this can be done within the framework of arrow presentations. In the end, the result can be simply described as follows:
 - if the loop is positive (orientable), the vertex splits into two parts which were previously separated by the edge e in the vertex. Each new vertex has the same ribbons in the same cyclic order that they appeared before (see Fig. 15(a));
 - if the loop is negative (non-orientable), then the vertex does not split. Consider the parts α and β on the vertex which are separated by the edge (see Fig. 15(b), $\alpha = \{1, 2, 3, 4\}$ and $\beta = \{5, 6, 7\}$).

The result of the contraction is given by the graph obtained after removing e and drawing on a new vertex v' the part α in the same cyclic order and the part β drawn in opposite cyclic order. Note that using a vertex flip on v', one could achieve the equivalent vertex configuration v'' obtained by reversing the role of α and β.

In practice, we will be interested in generic situations listed in Fig. 16.

![Fig. 13. Non-loop edge contractions.](image1)

![Fig. 14. (i) The contraction of the untwisted trivial loop e generates two separate graphs one of which is a vertex. (ii) The contraction of the trivial twisted loop e in \mathcal{G} is the same as its deletion.](image2)

![Fig. 15. General loop contractions.](image3)
FIG. 16. (i) Contraction of the untwisted e in \mathcal{G} generates two separate graphs. (ii) Contraction of the twisted e in \mathcal{G} generates one graph.

In this context of loop contraction, one can also introduce the concept of hard contraction removing extra discs generated. There exist other types of operations that are useful in ordinary graph theory and extends to ribbon graphs. In our developments, we will only need the disjoint union of graphs $\mathcal{G}_1 \sqcup \mathcal{G}_2$ which needs no comment.

Definition 2 (Faces). A face is a component of a boundary of \mathcal{G} considered as a geometric ribbon graph and hence as a surface with boundary.

Note that vertex graph made with one disc has one face.

The notion of ribbon graphs being properly introduced, we can proceed further and define an extended class of ribbon graphs. The class in question is called the class of ribbon graphs with half-ribbons. In the work by Krajewski et al., the authors called these graphs ribbon graphs with flags.

Definition 3 (Half-ribbons and half-edges). A half-ribbon is a ribbon incident to a unique vertex by a unique segment and without forming a loop. (An illustration is given in Figure 17.)

As opposed to ribbon edges, we do not assign any orientation to half-ribbons.

Definition 4 (Cut of a ribbon edge). Let \mathcal{G} be a ribbon graph and let e be one of its ribbon edge. The cut graph $\mathcal{G} \setminus e$ is the graph obtained by removing e and let two half-ribbons attached at the end vertices of e (see Fig. 18). If e is a loop, the two half-ribbons are on the same vertex.

- A half-ribbon generated by the cut of a ribbon edge is called a half-ribbon edge, but sometimes it will be simply referred to as half-edge.
- A ribbon graph with half-ribbons is a ribbon graph together with a set of half-ribbons attached to its discs.
- The set of half-ribbons is denoted by \mathcal{HR} (with cardinal HR) and it includes the set of half-edges by \mathcal{HE} (with cardinal HE). The rest of the half-ribbons will be called flags and denoted by \mathcal{FL} (with cardinal FL). Thus, $\mathcal{HR} = \mathcal{HE} \cup \mathcal{FL}$.

Precisions must be now given on the equivalence relation of ribbon graphs we will be working on. First, one must extend the notion of cyclic graphs to cyclic graphs with half-edges (the notion of “half-edge” in simple graph theory exists). Then two ribbon graphs with half-ribbons are isomorphic if there exist a series of vertex flips composed with isomorphisms of cyclic graphs with half-edges which transform one into the other.

The cut of a ribbon edge modifies the boundary faces of the ribbon graph. After the procedure, the new boundary faces follow the contour of the half-ribbons. It is always possible to introduce a distinction between this type of new faces and the initial ones. We will give a precision on this below.

FIG. 17. A half-ribbon h incident to one vertex disc.
As defined in Section II A, the notion of open and closed graphs and their constituents (forgetting the coloring) can be also addressed here. A closed ribbon graph does not have half-ribbons, otherwise it is called open. To harmonize our notations with Section II A and make transparent the link with the above tensor models, we will explicitly draw half-ribbons as two parallel strands, see Fig. 19. We can now introduce a definition for closed or open face as simply closed or open strand, respectively. The notions of pinched and boundary graphs find equivalent notions in ribbon graphs. We will refrain to introduce more definitions at this point (Fig. 20 illustrates an open ribbon graph, with open and closed faces, its pinched graph, and boundary graph).

III. PARAMETRIC REPRESENTATION OF AMPLITUDES

We start by reviewing our notations for tensor models. From Section III B, we present new results on the parametric form of the amplitudes of these models.

A. Abelian rank \(d\) models

Consider a rank \(d \geq 2\) complex field \(\varphi\) over the Lie group \(G_D = U(1)^D\), \(D \in \mathbb{N} \setminus \{0\}\), \(\varphi : (G_D)^D \to \mathbb{C}\), decomposed in Fourier components as

\[
\varphi(h_1, h_2, \ldots, h_d) = \sum_{P_{l_s}} \tilde{\varphi}_{P_{l_1}, P_{l_2}, \ldots, P_{l_d}} D^{P_{l_1}}(h_1) D^{P_{l_2}}(h_2) \cdots D^{P_{l_d}}(h_d),
\]

where \(h_s \in G_D\). The sum is performed over all values of momenta \(P_{l_s}\). \(P_{l_s}\) are labeled by multi-indices \(I_s\), with \(s = 1, 2, \ldots, d\), where \(I_s\) defines the representation indices of the group element \(h_s\) in the momentum space. \(D^{P_{l_s}}(h_s)\) plays the role of the plane wave in that representation. More specifically, one has

\[
h_s = (h_{s,1}, \ldots, h_{s,D}) \in G_D, \quad h_{s,l} = e^{i\theta_{s,l}} \in U(1), \quad D^{P_{l_s}}(h_s) = \prod_{l=1}^{D} e^{i p_{s,l} \theta_{s,l}}, \quad p_{s,l} \in \mathbb{Z},
\]

\[
P_{l_s} = \{p_{s,1}, \ldots, p_{s,D}\}, \quad I_s = \{(s,1), \ldots, (s,D)\}.
\]

Concerning the tensor \(\tilde{\varphi}\), we will simply use the notation \(\varphi_{[l]} := \tilde{\varphi}_{P_{l_1}, P_{l_2}, \ldots, P_{l_d}}\), where the super-index \([l]\) collects all momentum labels, i.e., \([l] = \{I_1, I_2, \ldots, I_d\}\). Note that no symmetry under permutation of the arguments is assumed for \(\varphi_{[l]}\). We rewrite (2) in these shorthand notations as

\[
\varphi(h_1, h_2, \ldots, h_d) = \sum_{[l]} \varphi_{[l]} D^{I_1}(h_1) D^{I_2}(h_2) \cdots D^{I_d}(h_d), \quad D^{I_s}(h_s) := D^{P_{l_s}}(h_s).
\]

Restricting to \(d = 2\), \(\varphi_{I_1, I_2}\) will be referred to a matrix.
1. **Kinetic term**

Upon writing an action, we must define a kinetic term and, in the present higher rank models, several interactions. In the momentum space, we define as kinetic term for our model

\[S_{\text{kin}} = \sum_{I} \left(\bar{\phi} P_{I} \phi P_{I} - \mu \sum_{I} |P_{I}| \right), \]

where the sum is performed over all values of the momenta \(p_{s,l} \in \mathbb{Z} \) and \(\mu \geq 0 \) is a mass coupling constant.

In direct space formulation, term Eq. (5) corresponds to a kinetic term defined by \(\sum_{\Delta} \frac{1}{2} + \mu \) and acts on the field \(\phi \). The non-integer power of the Laplacian can be motivated from several points of view.

(i) With the exact power of momentum in the propagator, there exist rank \(d \) models that are renormalizable among which we have a rank 3 tensor model and several matrix models. They will be the prototype models on which our following dimensional regularization procedure will be applied.

(ii) From axiomatic quantum field theory, models with \(\Delta^a \), where \(a \in (0, 1] \) are susceptible to be Osterwalder-Schrader positive.

(iii) To the above significant features, we add the fact that, with this power of the momenta, the parametric amplitudes of the models find a summable and tractable formula with interesting properties worthy to be investigated in greater details.

Passing to the quantum realm, we introduce a Gaussian measure on the tensor fields as \(d\nu C(\phi, \bar{\phi}) \) with a covariance given by

\[C\{P_{Is}\}, \{\bar{P}_{Is}\} = \left(\prod_{s=1}^{d} \delta_{p_{Is}, \bar{P}_{Is}} \right) \sum_{I} |P_{I}| + \mu \right)^{-1}, \]

such that \(\delta_{p_{Is}, \bar{P}_{Is}} := \prod_{l=1}^{D} \delta_{p_{s,l}, \bar{P}_{s,l}} \). Using the Schwinger trick, the covariance can be recast as

\[C\{P_{Is}\}, \{\bar{P}_{Is}\} = \left(\prod_{s=1}^{d} \delta_{p_{Is}, \bar{P}_{Is}} \int_{0}^{\infty} d\alpha e^{-\alpha \sum_{s=1}^{d} |P_{Is}|^2 \mu^2} \right). \]

The propagator is represented by a line made as a collection of \(d \) strands, see Fig. 1.

2. **Interactions**

Depending on the rank \(d \), two types of interactions dictated by the possible notions of invariance will be discussed.

- In rank \(d \geq 3 \): the interactions of the models considered are effective interactions obtained after integrating \(d \) colors in the rank \(d + 1 \) colored tensor model as discussed in Section II A (for a complete discussion, we refer to Ref. 27). The above field \(\phi \) is nothing but the remaining field \(\phi^0 = \phi \). An interaction term is defined from unsymmetrized tensors as unitary tensor invariant...
objects and built from the particular convolution of arguments of some set of tensors $\phi[I]$ and $\bar{\phi}[I']$. Such a contraction is performed only between the sth label of some $\phi[I]$ to another sth label of some $\bar{\phi}[I']$. It turns out that the total contraction of these tensors follows the pattern of a connected d-colored graphs called d-bubbles denoted b (we recall that p-bubble were introduced in Section II A, see Fig. 21).

In rank $d \geq 3$, a general interaction can be written as

$$S^{\text{int}}(\phi, \bar{\phi}) = \sum_{b \in B} \lambda_b I_b(\phi, \bar{\phi}),$$ \hspace{1cm} (8)

where the sum is over a finite set B of rank d colored tensor bubble graphs and λ_b is a coupling constant associated with that interaction. To each $I_b(\phi, \bar{\phi})$ corresponds a vertex operator identifying incoming and outgoing momenta and is of the form of a product of delta functions. In Fig. 21, we have illustrated some of these tensor invariants in rank 3 models.

- In rank $d = 2$ or matrix models, the interactions are simply trace invariants in the ordinary sense,

$$S^{\text{int}}(\phi, \bar{\phi}) = \sum_{p=2}^{P_{\text{max}}} \lambda_p S^{\text{int}}_p(\phi, \bar{\phi}), \hspace{1cm} S^{\text{int}}_p(\phi, \bar{\phi}) = \text{tr}[(\bar{\phi}\phi)^p],$$ \hspace{1cm} (9)

where λ_p stands for a coupling constant. Graphically, each term in (9) is represented by a cyclic graph with p external legs, see Fig. 22. One might wonder how the graphs obtained in matrix models relate to the ribbon graphs with flags explained earlier in Section II B. The answer to this is simple since one maps the vertices of matrix models to discs with half-ribbons (see Fig. 23) whereas propagators are viewed as ribbon lines. In order to achieve the mapping, one must attach the vertex/propagator data to the abstract discs with half-ribbons and ribbon lines.

B. Parametric amplitudes

The partition function of any models described above is of the form

$$Z = \int d\nu_C(\phi, \bar{\phi}) e^{-S^{\text{int}}(\phi, \bar{\phi})},$$ \hspace{1cm} (10)

FIG. 21. Colored 3-bubbles and their corresponding tensor invariants (in compact representation): The tensor fields are 0 and $\bar{0}$ and are contracted according to the pattern of the 3-bubble they are associated with.

FIG. 22. Examples of matrix model cyclic invariants: $\text{tr}(\phi^4)$ (left) and $\text{tr}(\phi^5)$ (right).
where C is given by (7) and S^{int} given either by (8) for rank $d \geq 3$ or by (9) in the case $d = 2$.

As it is in the ordinary case, Feynman amplitudes are obtained from Wick’s theorem. We compute for any connected graph \mathcal{G} made with the set \mathcal{L} of lines and the set \mathcal{V} of vertices, the amplitude

$$A_{\mathcal{G}} = \lambda_{\mathcal{G}} \sum_{P_{\{t\}}(v)} \prod_{\ell \in \mathcal{L}} C_\ell \{ \{ P_{I,\ell}(v(t)), \{ \bar{P}_{I,\ell}(v(t)) \} \} \prod_{v \in \mathcal{V} : s} \delta_{P_{I,\ell}; v; P'_{I,\ell}; v}, \tag{11}$$

where $\lambda_{\mathcal{G}}$ incorporates all coupling constants and the symmetry factors, and where the sum is performed over all values of the momenta $P_{\{t\}}(v)$ associated with vertices v on which the propagator lines are incident. The propagators C_ℓ possess line labels $\ell \in \mathcal{L}$.

Due to the fact that vertex operators and propagators are product of delta’s enforcing conservation of momenta along a strand, amplitude (11) factorizes in terms of connected strand components (faces) of the graph. There exist two types of faces: open faces the set of which will be denoted by \mathcal{F}_{ext} (with cardinal $F_{\text{ext}} = |\mathcal{F}_{\text{ext}}|$) and closed faces (or closed strands) the set of which will be denoted by \mathcal{F}_{int} (with cardinal $F_{\text{int}} = |\mathcal{F}_{\text{int}}|$). Evaluating (11) using (7), one gets

$$A_{\mathcal{G}} = \lambda_{\mathcal{G}} \sum_{P_{f}(v)} \left[\prod_{\ell \in \mathcal{L}} \prod_{f \in \mathcal{F}_{\text{ext}} \mathcal{F}_{\text{int}}} \left\{ e^{-\Sigma_{\text{eff}}(\pi_{f})} P_{f}(v) \right\} \prod_{f \in \mathcal{F}_{\text{ext}}} \left\{ e^{-\Sigma_{\text{eff}}(\pi_{f})} P_{f}(v) \right\} \right], \tag{12}$$

where P_{f} are external momenta (not summed and labeled by external faces) and the sum is over all values of internal momenta P_{f} (indexed by internal faces).

It turns out that, from the linear dependency in momenta of the propagator, all momentum dependency in the amplitude can be summed. The following proposition holds.

Proposition 1. Let \mathcal{G} be graph, $L_\mathcal{G}$ its set of lines, $F_{\text{int}}; \mathcal{G}$ its set of internal faces, $F_{\text{ext}}; \mathcal{G}$ its set of external faces, we denote the cardinal $L_\mathcal{G} = |L_\mathcal{G}|$. Then, the amplitude $A_{\mathcal{G}}$ of \mathcal{G} is given by

$$A_{\mathcal{G}} = c \lambda_{\mathcal{G}} \int_{[0,1]^L_\mathcal{G}} \left[\prod_{\ell \in L_\mathcal{G}} dt_{\ell} \frac{1 - t_{\ell}}{(1 + t_{\ell})^{\mu+1}} \right] W_{\mathcal{G}}(\{m_f\}; \{t_f\}) U_{\mathcal{G}}^{\text{ev/od}}(\{t_f\}), \tag{13}$$

where $c = 2^{L_\mathcal{G}}$ is an inessential factor, and

$$W_{\mathcal{G}}(\{m_f\}; \{t_f\}) = W_{\mathcal{G}}(\{m_f\}; \{t_f\}) \left[U_{\mathcal{G}}^{\text{ev/od}}(\{t_f\}) \right]^{D}, \tag{14}$$

$$W_{\mathcal{G}}(\{m_f\}; \{t_f\}) = \prod_{f \in F_{\text{ext}}; \mathcal{G}} \left(A_{f}^{\text{ext}} \right)^{|m_f|}, \quad A_{f}^{\text{ext}} = \prod_{l \in f} \frac{1 - t_l}{1 + t_l},$$

$$U_{\mathcal{G}}^{\text{ev/od}}(\{t_f\}) = \prod_{f \in F_{\text{int}}; \mathcal{G}} A_{f}^{\text{ev/od}}, \quad A_{f}^{\text{ev/od}} = \sum_{f | \text{even/odd}} \prod_{l \in f} t_l, \tag{15}$$

where m_f is the external momentum associated with an open face f.

Proof. For any connected graph \mathcal{G}, we re-write amplitude (12) as

$$A_{\mathcal{G}} = \lambda_{\mathcal{G}} \int_{[0,1]^L_\mathcal{G}} \left[\prod_{\ell \in L_\mathcal{G}} dt_{\ell} e^{-\alpha \mu_{\ell}} \right] \left[\prod_{f \in F_{\text{ext}}; \mathcal{G}} e^{-\Sigma_{\text{eff}}(\pi_{f})} \right] \left[\prod_{f \in F_{\text{int}}; \mathcal{G}} \left(\frac{1 + e^{-\Sigma_{\text{eff}}(\pi_{f})}}{1 - e^{-\Sigma_{\text{eff}}(\pi_{f})}} \right)^{D} \right] \tag{16}$$
Now, we change variable as
\[t_l = \tanh \frac{\alpha}{2} \]
and obtain
\[A_G = 2^{d_G} \int \left[\prod_{l \in L_G} dt_l \frac{(1 - t_l)^{\mu - 1}}{(1 + t_l)^{\mu + 1}} \right] \tilde{W}_G(\{m_f\}; \{t_l\}) \left(\prod_{f \in F_G} \frac{\prod_{l \in f} (1 + t_l^{-1})}{\prod_{l \in f} (1 - t_l^{-1})} \right)^D \left(\prod_{f \in F_G} \frac{\prod_{l \in f} (1 + t_l)}{\prod_{l \in f} (1 - t_l)} \right)^D, \]
\[\tilde{W}_G(\{m_f\}; \{t_l\}) = \prod_{f \in F_G} \prod_{l \in f} \left(\frac{1 - t_l}{1 + t_l} \right)^{|m_f|}. \]
(18)

Using now definitions (15), we can infer that the numerator in the amplitude is given by \(\tilde{W}_G(U_G^{\text{ev}})^D \), in other words (14), and the denominator can be further expanded and yields \(U_G^{\text{od}} \) (15).

Formulas (13) and (16) provide, for any rank \(d \) model over \(G_D \) with a propagator linear in momentum, the parametric amplitude for a graph \(G \). Parametric form (13) appears more adapted to our following developments. For the reduced rank \(d = 2 \), the same parametric amplitudes do not fully coincide with the analog amplitudes of the GW model\(^{79-81} \) in the matrix basis neither in 2D nor in 4D.\(^{70} \) The reason this occurs comes from the fact that the GW model in the matrix basis is described in terms of matrices \(M_{m,n} \) with indices \(n \) and \(m \) having values only in positive integers \(\mathbb{N} \) (2D) or \(\mathbb{N}^2 \) (4D). In order to recover the amplitudes for the GW models from (13), one must replace in \(W_G, U_G^{\text{ev}}(\{t_l\}) \) by \(c' \prod_{f \in F_G} \prod_{l \in f} (1 + t_l) \) with \(c' \) an inessential factor \(2^{-D/\text{int.}} \) which should be combined with \(c = 2^{D/2} \).

As another remark (we thank an anonymous referee for that remark), a kinetic kernel of the form \((\sum_{a=1}^M |P_{f_a}| + \mu)^a \), for \(a \geq 1 \), leads again to a well-defined parametric amplitude. Indeed, the Schwinger representation of the propagator associated with this kernel is of the form \((1/\Gamma[a]) \int_0^\infty a^{-1} e^{-a|\sum_{a=1}^M |P_{f_a}| + \mu|} da \) and is still summable. The introduction of such a new kinetic term can be motivated from the fact that it can be used to probe the meromorphicity of the case \((\Delta^a + \mu) \). Nevertheless, all the following results will be more difficult to infer because of the presence of a new parameter in the parametric amplitude which involves \(\text{ln}[(1 + t_l)/(1 - t_l)] \) per line \(l \), and therefore might entail new poles at \(t_l = 1 \). This analysis is postponed to future work.

The polynomials \(U_G^{\text{od/ev}} \) appear as a product over faces of some other polynomials. The following analysis rests strongly on this face structure.

Definition 5 (Odd, even, and external face polynomial). Let \(f \) be an internal face in a tensor graph of the above models. We call \(A_f^{\text{od/ev}} \) (15) the odd/even face polynomial in the variables \(\{t_l\}_{l \in f} \) associated with \(f \). If \(f \) is external, then we call \(A_f^{\text{ext}} \) the external face polynomial associated with \(f \) in the variable \(T_l = (1 - t_l)/(1 + t_l) \).

Some conventions must be set at this stage. For the empty graph \(G = \emptyset \) (no vertex), we set \(U_G^{\text{od}} = 1 \) and \(U_G^{\text{ev}} = \tilde{W}_G = W_G = 1 \). Consider the vertex as a simple disc. As a graph we will denote it by \(G = \odot \). It has one closed face \(f \) and, for such a graph, we set
\[A_f^{\text{od}} = 0, \quad A_f^{\text{ev}} = 1. \]
(19)

As a result, for the vertex graph \(G = \odot \), we calculate \(U_G^{\text{od}} = 0, U_G^{\text{ev}} = 1 \), and \(\tilde{W}_G = W_G = 1 \). Furthermore, there exist open faces which do not have any lines. For these types of faces, we set
\[A_f^{\text{ext}} = 1. \]
(20)

Now, for a graph \(G \) without any lines but external faces, we have \(U_G^{\text{od}} = 1 = U_G^{\text{ev}} \) and \(\tilde{W}_G = 1 = W_G \).

Consider two distinct graphs \(G_1 \) and \(G_2 \), we have
\[U_G^{\text{od/ev}} = U_{G_1}^{\text{od/ev}} U_{G_2}^{\text{od/ev}}, \quad \tilde{W}_G = \tilde{W}_{G_1} \tilde{W}_{G_2}. \]
(21)
From this rule, a drastic consequence follows: for any graph \(G \), \(\mathcal{U}^{\text{od}}_{G,\infty} = \mathcal{U}^{\text{od}}_G = 0 \). This means that to (soft) contract arbitrary edges in a graph might lead to vanishing polynomials on the resulting graphs. Thus, one can have severe implications on the amplitudes of contracted graphs that we will aim at studying in Sec. IV. Nevertheless, this present convention makes transparent the analysis of polynomials undertaken in Section V. In any case, there should exist a set of conventions (e.g., setting \(\mathcal{U}^{\text{od}}_G = 1 \)), under which the following amplitude analysis should be valid and the analysis of polynomials should be slightly re-adjusted. In Sec. IV, we will use hard contractions on rank \(d \) graphs and these, by definition, do not generate discs to avoid any issues.

IV. DIMENSIONAL REGULARIZATION

In this section, we start the investigation of the parametric amplitudes in view of a dimensional regularization and its associated subtraction program.

The idea of the subsequent regularization procedure can be considered as standard in the field.\(^{67,68,82}\) There are however some particularities that we must emphasize when we apply it to nonlocal theories like tensor models. The method also proves to be powerful enough for other types of nonlocal theories\(^{83,84}\) and can even lead to further applications in noncommutative field theory.\(^{85,86}\) Let us review quickly this method in the ordinary field theoretical formalism.

Using a parametric form of the quantum field amplitudes in a \(d \) dimensional spacetime, the dimension \(d \) appears as an explicit parameter in these amplitudes and, as such, can be complexified. First, one must show that there exists a complex domain in \(d \) (which can be small) which guarantees the convergence of all amplitudes and their analytic structure. Then, one extends the domain and shows that the only possible divergences occurring in the amplitudes are located at distinct values of \(d \) involving only isolated poles. As functions of \(d \) on this extended domain, amplitudes are therefore meromorphic. From this point, the so-called amplitude regularization can be undertaken by removing the problematic infinite contributions using a neat subtraction operator. This operator acts on the amplitudes and leads to finite and analytic integrals on the whole meromorphicity domain. The new amplitudes are called renormalized.

To be complete, it is noteworthy to signal that, in order to prove the meromorphic structure of the Feynman amplitudes, there are at least two known ways. One of the methods uses the so-called complete Mellin representation of the parametric amplitudes,\(^{87-89}\) (which can be applied to the context of noncommutative field theory\(^{90}\)) and the other introduces the method of Hepp sectors\(^{68,82}\) and factorization techniques. The first approach in the present context leads to peculiarities which need to be understood. Using the second path, one discovers that the method is well defined and finds a non-trivial counterpart for, at least, some just-renormalizable tensor models. We, thereafter, focus on this second alternative.

A. Regularization using Hepp sectors

We now proceed with the dimensional regularization scheme. Using Hepp sectors (or a meaningful subgraphs’ decomposition) of the amplitude, one can identify the singular part of any diverging amplitude. The singular part is expressed in terms of the complexified dimension \(D \).

Our main concern is the regularization of integral (13) when \(t_1 \rightarrow 0 \) corresponding to the UV (ultraviolet) limit of the model. One notices that when \(t_1 \rightarrow 1 \), the integral is divergent when the mass \(\mu \) is bounded as \(0 \leq \mu < 1 \) and if all external momenta \(|m_j| \) are equally put to 0. For a massive field theory, one can assume the mass to be strictly larger than 1 with no loss of generality, and for a massless field theory, one can define fields without 0-momentum modes. In the direct space formalism,\(^{14}\) the same limit \(t_1 \rightarrow 1 \) corresponds to an IR (infrared) limit, and the amplitude turns out to be bounded simply because of the compactness of \(U(1)^D \). Given these reasons and since we discuss UV divergences, we will only investigate \(t_1 \rightarrow 0 \).

In the following, we are interested in Abelian models (i.e., \(G_D = U(1)^D \)) with a kinetic term of the form \(\sum_s |P_s| + \mu \). A generic model will be written as \(D \Phi^P_{k_{\text{max}}} \) where \(D \) refers to the dimension of the group \(G_D \), \(k_{\text{max}} \) to the maximal valence of the vertices, and \(d \) to the theory rank. According to the analysis,\(^{27}\) only the following models respect these conditions and are perturbatively

renormalizable (at all orders):

\[i \Phi_3^4, \quad G_D = U(1) \quad \text{(just-renormalizable \ Ref. 20)}, \]
\[2 \Phi_2^4, \quad G_D = U(1)^2 \quad \text{(just-renormalizable)}, \]
\[\forall n \geq 2, \quad i \Phi_2^{2n}, \quad G_D = U(1) \quad \text{(super-renormalizable)}. \]

We refer the last family of models \(i\Phi_{2}^{2n}\) to a tower of models parametrized by the maximal valence of its vertices \(k_{\text{max}} = 2n\). The matrix interactions are, as discussed in Sec. III, single trace invariants. For the model \(i\Phi_{4}^{3}\), the type of tensor invariant interactions that one considers is constructed with 4 tensors contracted according to the pattern of a 3-bubble colored graph made with 4 vertices (2 white and 2 black, see Fig. 21). There are 3 colored symmetric connected invariants of this type. Fully expanded, one of these invariants is drawn in Fig. 24. The rest of the invariants participating to the interaction of \(i\Phi_{4}^{3}\) can be obtained by color symmetry.

The graph amplitudes in rank \(d \geq 2\) TGFTs were studied using multi-scale analysis in Ref. 27.

In this work, we provide a new and independent way of regularizing these divergent graphs using now the particular form of their parametric amplitude representation and their underlying meromorphic structure.

1. Fundamental expansion theorem for amplitudes

A particular expansion property of the parametric amplitudes is now determined. This is a kind of factorization of an amplitude \(A_{G}\) with respect to a given subgraph \(S\) of \(G\), at given order of a scaling parameter \(\rho\), after dilating all variables \(t_{l} \in \mathcal{L}(S) \rightarrow \rho t_{l} \in \mathcal{L}(S)\). This property is crucial for the subtraction or renormalization procedure of the amplitudes of (22). As previously mentioned, we will not carry out the full subtraction program of the divergences in the amplitudes. Nevertheless, Proposition 2 will be a fundamental result towards this goal. The factorization is also important in the definition of a co-product for the Connes-Kreimer Hopf algebra structure intimately associated with the renormalization of the model (see Refs. 91 and 92 for seminal works). How this applies to tensor models can be found in Ref. 29. For recent approaches in the framework of noncommutative field theory, one can consult Refs. 93 and 94.

We shall need some information about the scaling of the polynomials \(U^{od/ev}\). A specific terminology and more notations are now introduced:

- We strengthen the notations \(\mathcal{L}_{G} = \mathcal{L}(G)\) and \(\mathcal{F}_{\text{int},G} = \mathcal{F}_{\text{int}}(G)\) making explicit the dependence on the graph \(G\).

- A subgraph \(S\) of \(G\) is defined by a subset \(\mathcal{L}(S)\) of lines of \(G\) and their incident vertices and cutting all remaining lines incident to these vertices. Thus, from the field theory point of view, we will always consider a “subgraph” as a “cutting subgraph.”

- We call a divergent subgraph \(S\) of \(G\) a subgraph of \(G\), such that \(A_{S}\) is divergent. There is a set on conditions under which this occurs. We will come back on these conditions in Sec. IV A 2.

- We recall the following operations on subgraphs: Consider a subgraph \(S\) of \(G\).

 - “Contraction” always refers in this section to hard contraction unless otherwise explicitly stated.
 - Let \(G\) be a graph and \(e\) be one of its edges (lines). The graph \(G/e\) is defined as in Section II and is called the graph obtained after contraction of \(e\).
For connected S, the contracted graph G/S is a graph obtained from the full contraction of the lines in S (see an illustration in Fig. 25). If S is non-connected, one must apply the same procedure to each connected component.

- Consider $S \subset G$, strictly speaking, G/S is not a subgraph of G. The only point which prevents to regard G/S as a subgraph of G is the fact that it might contain one or several vertices which are not included in G. These vertices come from the contraction of S. One notices that, by definition, $L(G/S) = L(G) \setminus L(S)$.

Let us introduce notations for subsets of $F_*(G)$, $\bullet = \text{int, ext}$. The following two statements are valid in the nontrivial case $S \neq \emptyset \neq G$.

Definition 6 (Sets of faces). For all $S \subset G$,
- $F^\bullet_{\text{int}}(S) = F_{\text{int}}(S)$ is the set of internal faces in S, i.e., $\forall f \in F^\bullet_{\text{int}}(S)$, $\forall l \in f$, $l \in L(S)$.
- $F^\bullet_{\text{ext}}(S)$ is the set of external faces in S having either all their lines lying only in S, i.e., $\forall f \in F^\bullet_{\text{ext}}(S)$, $\forall l \in f$, $l \in L(S)$, or if the external face does not contain any lines (strands in vertices which are not connected to any lines), we impose $f \in F^\bullet_{\text{ext}}(S)$ if the vertex attached to f is in $V(S)$.
- $F^\bullet_*(G,S)$ is the subset of \bullet-faces of G passing through at least one line of S and also through at least one line in G/S. We have for this category of faces, $\forall f \in F^\bullet_*(G,S)$, $\exists (l, l') \in f \times f$ such that $l \in L(G/S)$ and $l' \in L(S)$.
- $F^\bullet_*''(G,S) = F^\bullet_*(G) \setminus (F^\bullet_{\text{int}}(S) \cup F^\bullet_{\text{ext}}(G,S))$.
- $F^\bullet_{\text{ext}}(S)/S$ denotes the set of \bullet-faces in G, also in G/S, coming from $F^\bullet_{\text{ext}}(G,S)$ and which are shortened after the contraction of S.
- $F^\bullet_{\text{ext}}(S)/S$ is the set of external faces in G, also in G/S, resulting from $F^\bullet_{\text{ext}}(S)$ after the contraction of S.

- Given $e \in f$, we denote f/e (respectively $f - e$) the face resulting from f after the contraction (respectively the deletion) of e in G yielding G/e (respectively $G - e$). Given a subgraph $S \subset G$, we denote f/S the face resulting from f in G after successive contractions of all edges of S.

Some sets of faces as defined above for a ribbon graph G and one of its subgraph S have been illustrated in Fig. 25.

Few remarks can be spelled out:
- It is true that $F^\bullet_{\text{int}}(S) = F_{\text{int}}(S)$, however, in general, $F^\bullet_{\text{ext}}(S) \neq F_{\text{ext}}(S)$ as an external face in S might have other lines in the larger graph G or might even close in G.
- If the external face f does not pass through any lines, we say that $f \in F^\bullet_{\text{ext}}(G,S)$ if the vertex touching f belongs to $V(G) \setminus V(S)$.
- We define $F^\bullet_*(G)/S = F^\bullet_*(G)\setminus S$.
- If $S = G$, the above definition trivializes drastically, as follows: $F^\bullet_*(G) = F_{\text{ext}}(G)$, $F^\bullet_*(G, G) = \emptyset = F^\bullet_*(G, S)$.

The following statement will be useful (the symbol \equiv below means “one-to-one”).

Lemma 1 (Sets of faces decomposition). Consider a subgraph S of a graph G. We have

$$F^\bullet_*(G) = F^\bullet_{\text{int}}(S) \cup F^\bullet_*(G, S) \cup F^\bullet_{\text{ext}}(G, S), \quad \bullet = \text{int, ext}.$$ \hspace{1cm} (23)

The subsets $F^\bullet_{\text{int}}(S)$, $F^\bullet_*(G, S)$, and $F^\bullet_{\text{ext}}(G, S)$ are pairwise disjoint when $S \neq G$. Furthermore,
Proof: The soft contraction of a line in \(\mathcal{S} \) only shortens faces. No faces can be created or destroyed by such a move. The number of faces must be conserved at the end of the soft contraction of all lines in \(\mathcal{S} \). Moreover, the “internal” or “external” nature of faces is preserved during the procedure. The result of a hard contraction can be inferred from this point.

We will focus on (24) and on (25), since the rest of the relations falls quite from the definitions.

- To prove (24), one must notice that we can associate with each element \(f \in \mathcal{T}_l^0(\mathcal{G}, \mathcal{S}) \) a line \(l_f \) in \(\mathcal{G}/\mathcal{S} \) which is not touched by the (hard) contraction of \(\mathcal{S} \). This line ensures the one-to-one correspondence between an element in \(\mathcal{T}_l^0(\mathcal{G}, \mathcal{S}) \) and an element in \(\mathcal{T}_l^0(\mathcal{G}/\mathcal{S}) \) after (hard) contraction. Indeed, take \(f \in \mathcal{T}_l^0(\mathcal{G}, \mathcal{S}) \) and \(\forall f \in \mathcal{L}(\mathcal{G}/\mathcal{S}) \) such that \(l_f \in f \). Then (hard) contract \(\mathcal{S} \), then \(l_f \in f/\mathcal{S} \) and \(f/\mathcal{S} \in \mathcal{T}_l^0(\mathcal{G}/\mathcal{S})/\mathcal{S} \). Reciprocally, take \(f \in \mathcal{T}_l^0(\mathcal{G}/\mathcal{S})/\mathcal{S} \), then by definition \(\forall f_0 \in \mathcal{T}_l^0(\mathcal{G}, \mathcal{S}) \) such that \(f_0/\mathcal{S} = f \) and \(f_0 \) is not empty, since by definition there must exist \(l \in \mathcal{L}(\mathcal{S}) \) and \(l \in f_0 \). Note also that (24) does not depend on the type of contraction.

- To achieve (25), one notes that, after the complete hard contraction of all lines in \(\mathcal{S}, \mathcal{T}_{\text{int}}(\mathcal{S}) \) is mapped to the empty set. Indeed, a closed face \(f \) in \(\mathcal{S} \) either becomes shorter and shorter after (hard or soft) contraction whenever there still exists a line \(l \in f \). At some point, \(f \) reaches a stage where it must generate a disc after soft contraction of its last line. Using hard contraction, this disc does not occur. \(\Box \)

We focus now on the scaling properties of the polynomials \(U^{\text{od/ev}} \) and \(W \). Consider \(\mathcal{S} \) a subgraph of \(\mathcal{G} \). Rescaling by \(\rho \) all variables \(t_l \) such that \(l \in \mathcal{L}(\mathcal{S}) \), one gets from \(U^{\text{od/ev}}_\mathcal{G} \) a new polynomial in \(\rho \). We call \(U^{\text{od/ev}}_\mathcal{G}(\rho \cdot t_l) \) the sum of terms with minimal degree in the expansion of \(U^{\text{od/ev}}_\mathcal{G} \), and \(U^{\text{od/ev}}_\mathcal{G}(\rho \cdot t_l^m) \) the analogue sum for the minimal degree in \(\rho \) in the rescaled polynomial. Note that it is immediate to realize that

\[
U^{\text{od}; \ell(\rho)}_\mathcal{S} = \rho^{F_{\text{int}}(\mathcal{S})} U^{\text{od}; \ell}_\mathcal{S}, \quad U^{\text{ev}; \ell(\rho)}_\mathcal{S} = 1 = U^{\text{ev}; \ell}_\mathcal{S}.
\]

(27)

The following statement holds.

Lemma 2 (Scaling properties of \(U^{\text{od/ev}} \) and \(W \)). Consider a graph \(\mathcal{G} \) and a subgraph \(\mathcal{S} \) of \(\mathcal{G} \). Under rescaling \(t_l \rightarrow \rho t_l \), \(\forall l \in \mathcal{L}(\mathcal{S}) \), we have

\[
U^{\text{od}}_\mathcal{G}(\{\rho t_l\}_{l \in \mathcal{L}(\mathcal{S})}; \{t_l\}_{l \in \mathcal{L}(\mathcal{G}/\mathcal{S})}) = \rho^{F_{\text{int}}(\mathcal{S})} U^{\text{od}}_\mathcal{G}(\rho; \{t_l\}_{l \in \mathcal{L}(\mathcal{G})}),
\]

\[
U^{\text{od}}_\mathcal{G}(\rho = 0; \{t_l\}_{l \in \mathcal{L}(\mathcal{G})}) = U^{\text{od}; \ell}_\mathcal{G}/\mathcal{S},
\]

(28)

\[
U^{\text{ev}; \ell(\rho)}_\mathcal{G} = U^{\text{ev}}_\mathcal{G}/\mathcal{S},
\]

(29)

where \(U^{\text{od}}_\mathcal{G} \) is again polynomial in \(\rho \).

Performing a Taylor expansion in \(\rho \) around 0 of \(W_\mathcal{G}(\{m_l\}; \{\rho t_l\}_{l \in \mathcal{L}(\mathcal{S})}; \{t_l\}_{l \in \mathcal{L}(\mathcal{G}/\mathcal{L}(\mathcal{S}))} \) and taking \(W^{\ell(\rho)}_\mathcal{G} \) as the lowest order in \(\rho \), we have

\[
W^{\ell(\rho)}_\mathcal{G}(\{m_l\}; \{t_l\}) = W_\mathcal{G}/\mathcal{S}(\{m_l\}; \{t_l\}).
\]

(30)

Proof: Computing the amplitude of \(\mathcal{G}/\mathcal{S} \), one must simply put to 0 some of the variables \(\alpha_1 \) \(l \in \mathcal{L}(\mathcal{S}) \) in (12) and do not integrate over them. This expansion involves \(U^{\text{od}}_\mathcal{G}/\mathcal{S} \) defined with \(\mathcal{T}_{\text{int}}(\mathcal{G}/\mathcal{S}) \) as given by (26) in Lemma 1.

On the other hand, using (23) in Lemma 1, we can write the following expression for a partially rescaled polynomial \(U^{\text{od}}_\mathcal{G} \).

\[
\]
At the smallest order in ρ, we collect from the first bracket $U_{\cal G}^{\text{od}, \ell(\rho)}$ and from the two remaining brackets, after putting $\rho = 0$ (this is similar to put $\alpha_l = 0$, for $l \in \mathcal{L}(S)$, in (12)) the polynomial $U_{\cal G/S}^{\text{od}, \ell(\rho)}$. Thus, (28) holds.

In order to find the second equality for $U_{\cal G}^{\text{ev}, \ell(\rho)}$ (29), we use same decomposition (23) of Lemma 1 and (27).

We now perform a Taylor expansion around $\rho = 0$ of the following expression (in suggestive though loose notations):

$$W_{\cal G}(\{m_f\}; \{\rho_l\}_{l \in \mathcal{L}(S)}; \{t_l\}_{l \in \mathcal{L}(G) \setminus \mathcal{L}(S)}) = \left[\prod_{f \in \mathcal{F}_{\text{int}}^+} \cdots \right] \left[\prod_{f \in \mathcal{F}_{\text{int}}^-} \cdots \right] \left[\prod_{l \in \mathcal{L}(S)} \cdots \right] (U_{\cal G}^{\text{ev}})^D$$

$$= \left[\prod_{f \in \mathcal{F}_{\text{ext}}^+} (1 + \rho \cdots) \right] \left[\prod_{f \in \mathcal{F}_{\text{ext}}^-} (1 + \rho \cdots) \right] \left[\prod_{l \in \mathcal{L}(G) \setminus \mathcal{L}(S)} \left(\frac{1 - t_l}{1 + t_l} \right) \right] \left[\prod_{f \in \mathcal{F}_{\text{int}}^-} \cdots \right] (U_{\cal G}^{\text{ev}})^D,$$

where we used (23) in Lemma 1. Now at minimal degree in ρ, we infer

$$W_{\cal G}^{\ell(\rho)}(\{m_f\}; \{t_l\}) = \left[\prod_{f \in \mathcal{F}_{\text{ext}}^+} \cdots \right] \left[\prod_{l \notin \mathcal{L}(G) \setminus \mathcal{L}(S)} \left(\frac{1 - t_l}{1 + t_l} \right) \right] \left[\prod_{f \in \mathcal{F}_{\text{int}}^-} \cdots \right] (U_{\cal G}^{\text{ev}, \ell(\rho)})^D$$

and one concludes using (a) (29) to map $U_{\cal G}^{\text{ev}, \ell(\rho)}$ onto $U_{\cal G/S}^{\text{ev}}$, (b) $\mathcal{F}_{\text{ext}}(\mathcal{G}/\mathcal{S})$ from (26) in Lemma 1, and finally (c) observe that $\mathcal{F}_{\text{ext}}^+(\mathcal{S})/\mathcal{S} \subset \mathcal{F}_{\text{ext}}(\mathcal{G}/\mathcal{S})$ are external faces in the contracted graph \mathcal{G}/\mathcal{S} which do not pass through any lines and by convention $A_{\mathcal{F}_{\text{ext}}^+} = 1$ (20).

The preliminary scaling properties addressed in Lemma 2 will allow us to understand the most diverging part of the amplitude. However, in some cases, there exist subleading divergences which need to be renormalized as well. In particular, these kinds of divergences occur in the two-point function and the factorization must be extended up to higher orders in the scale parameter ρ. This is our next goal.

It is important to recall that some external momenta of \mathcal{S} might very well be internal momenta of \mathcal{G} (and so of \mathcal{G}/\mathcal{S}). Before undertaking any developments, we go back to formula (12) prior to the summation over all internal momenta. We can sum internal momenta of \mathcal{S} and internal momenta defined by $\mathcal{F}_{\text{int}}^-$. The internal momenta determined by $\mathcal{F}_{\text{int}}^+$ require a special treatment and we will carry out their sum only after expansion. Now, we consider the μ_0-subtracted amplitude (called μ-subtracted in Ref. 68) where the mass gets shifted by a constant μ_0 such that $\mu_0 \to 0$ and $\mu_0 \to \mu$, one goes back to the usual amplitude. We call $I_{\mathcal{G}}(\{m_f\}; \{t_l\})$ the integrand of $A_{\mathcal{G}}(\{m_f\}; D)$ and the integrand of the μ_0-subtracted amplitude the very same $I_{\mathcal{G}}(\{m_f\}; \{t_l\})$. Now, we modify the measure factors such that

$$\forall l \in \mathcal{L}(\mathcal{G}), \quad \frac{(1 - t_l)^{\mu - 1}}{(1 + t_l)^{\mu + 1}} = \frac{(1 - t_l)^{\mu_0 - 1} (1 - t_l)^{\mu - \mu_0}}{(1 + t_l)^{\mu_0 + 1} (1 + t_l)^{\mu - \mu_0}}. \tag{34}$$

It is not onto $I_{\mathcal{G}}$ that the generalized Taylor operators (removing the singularities) will act. The object of interest is rather

$$I_{\mathcal{G}}(\{m_f\}; \mu_0; \{t_l\}) = \left(\prod_{l \in \mathcal{L}(\mathcal{G})} \frac{(1 - t_l)^{\mu_0 - 1}}{(1 + t_l)^{\mu_0 + 1}} \right)^{-1} I_{\mathcal{G}}(\{m_f\}; \{t_l\}). \tag{35}$$
We will call \(I_G(\{m_f\}; \mu_0; \{t_l\}) \) the \(\mu_0 \)-modified integrand of the amplitude. Our objective is to perform an expansion in \(\rho \) after rescaling the variables \(t_l \to \rho t_l, \forall l \in \mathcal{L}(S) \), in \(I_G(\{m_f\}; \mu_0; \{t_l\}) \).

Consider the notations \(U_{G;S}^{\ell'} = \prod_{f \in \mathcal{F}_{ext}^{\ell'}} A_{f}^{\ell'} \) and \(U_{G;S}^{\ell od;ev} = \prod_{f \in \mathcal{F}_{int}^{\ell'} \cap \mathcal{L}(S)} A_{f}^{\ell od;ev} \).

Proposition 2 (\(\mu_0 \)-modified integrand expansion). Consider a graph \(G \) of a rank \(d \) model, a subgraph \(S \) of \(G \) with external legs, and the momenta \(P_{S,f} \) where \(f \in \mathcal{F}_{int}^{\ell'} \).

Then we have the following expansion:

\[
I_G(\{m_f\}; \mu_0; \{\rho t_l\}_{l \in \mathcal{L}(S)}; \{t_l\}_{l \in \mathcal{L}(G/S)}) = \left[1 - 2\rho(\mu - \mu_0) R_S(\{t_l\}) \right] \prod_{l \in \mathcal{L}(G/S)} \left(1 + \frac{\rho t_l}{1 + t_l} \right)^{\mu - \mu_0} \times \\
\left[\prod_{f \in \mathcal{F}_{ext}^{\ell}} \prod_{l \in \mathcal{F}_{ext}^{\ell}/f} \left(1 - \frac{t_l}{1 + t_l} \right)^{|m_f|} \right] \left(U_{G;S}^{\ell'} \right)^{D} \left(U_{G;S}^{\ell od;ev} \right)^{D} \\
\left[\prod_{l \in \mathcal{L}(S)} \left(1 - \frac{\rho t_l}{1 + \rho t_l} \right)^{\mu - \mu_0} \right] \left[\prod_{f \in \mathcal{F}_{ext}^{\ell}} \prod_{l \in \mathcal{F}_{ext}^{\ell}/f} \left(1 - \frac{\rho t_l}{1 + \rho t_l} \right)^{|m_f|} \right] \times \\
\left[\prod_{f \in \mathcal{F}_{int}^{\ell'}} \left(\prod_{l \in \mathcal{F}_{int}^{\ell'}/f} \left(1 - \frac{\rho t_l}{1 + \rho t_l} \right)^{|m_f|} \left(1 - \frac{t_l}{1 + t_l} \right)^{|m_f|} \right) \right] \\
\sum_{P_{S,f} \in \mathcal{F}_{int}^{\ell'}} \left[\prod_{f \in \mathcal{F}_{int}^{\ell'}} \left(\prod_{l \in \mathcal{F}_{int}^{\ell'}/f} \left(1 - \frac{\rho t_l}{1 + \rho t_l} \right)^{|P_{S,f}|} \left(1 - \frac{t_l}{1 + t_l} \right)^{|P_{S,f}|} \right) \right] \left(R_S(\{t_l\}) \right)^{D}.
\] (37)

Now, for small \(\rho \), we perform a Taylor expansion on the mass terms

\[
\prod_{l \in \mathcal{L}(S)} \left(1 - \frac{\rho t_l}{1 + \rho t_l} \right)^{\mu - \mu_0} = 1 - 2\rho(\mu - \mu_0) R_S(\{t_l\}) + O(\rho^2), \quad R_S(\{t_l\}) = \sum_{l \in \mathcal{L}(S)} t_l.
\] (38)

Next, we focus on the factor \(\prod_{f \in \mathcal{F}_{ext}^{\ell}} \prod_{l \in \mathcal{F}_{ext}^{\ell}/f} (\ldots) \) and the product \(\prod_{f \in \mathcal{F}_{int}^{\ell'}} \prod_{l \in \mathcal{F}_{int}^{\ell'}/f} (\ldots) \). We obtain the following contributions:
\[
\prod_{f \in \mathcal{F}_{\text{ext}}(S)} \prod_{l \in f \cap L(S)} \left(\frac{1 - \rho t l}{1 + \rho t l} \right)^{|m_f|} = 1 - 2 \rho \sum_{f \in \mathcal{F}_{\text{ext}}} |m_f| R_{S,f}(\{t l\}) + O(\rho^2),
\]
\[
\prod_{f \in \mathcal{F}_{\text{ext}} \setminus \mathcal{F}_{\text{int}}(G)} \prod_{l \in f \cap L(S)} \left(\frac{1 - \rho t l}{1 + \rho t l} \right)^{|m_f|} = 1 - 2 \rho \sum_{f \in \mathcal{F}_{\text{ext}} \setminus \mathcal{F}_{\text{int}}(G)} |m_f| R_{S,f}(\{t l\}) + O(\rho^2),
\]
\[
R_{S,f}(\{t l\}) = \sum_{l \in f \cap L(S)} t l.
\]
Note that the remaining factors can be put into the form
\[
\prod_{f \in \mathcal{F}_{\text{ext}} \setminus \mathcal{F}_{\text{int}}(G)} \prod_{l \in f \cap L(S)} \left(\frac{1 - t l}{1 + t l} \right)^{|m_f|} = \prod_{f \in \mathcal{F}_{\text{ext}} \setminus \mathcal{F}_{\text{int}}(G)} \prod_{l \in f \cap L(S)} \left(\frac{1 - t l}{1 + t l} \right)^{|m_f|}.
\]
The product \(\prod_{f \in \mathcal{F}_{\text{int}}} \prod_{l \in f \cap L(S)} (1 - \rho t l) \) can be calculated in a similar manner just by replacing, in (39), the sum over \(\mathcal{F}_{\text{int}} \) by the sum over \(\mathcal{F}_{\text{ext}} \) and \(m_f \) by \(P_{S,f} \).

We can recompute the external factor amplitudes of \(G/S \) as follows: using (26) in Lemma 1, we see that the complementary of \(\mathcal{F}_{\text{int}} \cup \mathcal{F}_{\text{ext}}(G) \) in \(\mathcal{F}(G/S) \) is \(\mathcal{F}_{\text{ext}}(G/S) \) and note that, for any \(f \in \mathcal{F}_{\text{ext}}(G/S) \), \(A_f = 1 \). Thus, after the above expansion, we can collect \(A_f^\text{ext} \), for all \(f \in \mathcal{F}_{\text{ext}}(G/S) \).

Focusing on the factor \(U_S^{\text{ev}}/U_S^{\text{od}} \), using Lemma 2 and (27), we have
\[
\frac{U_S^{\text{ev}}}{U_S^{\text{od}}} \left(\{\rho t l\} \right) = \rho^{-F_{\text{int}}(S)} \left(\frac{1}{U_S^{\text{od}}}; \{\rho t l\} \right) + O(\rho^2),
\]
\[
\tilde{I}_S(\{m f = 0; P_{S,f} = 0\}; \{\mu_0 = \mu l\}; \{t l\}_{l \in L(S)}) = \rho^{-D F_{\text{int}}(S)} \frac{1}{U_S^{\text{od}}}; \{\rho t l\} - 2 \rho \sum_{f \in \mathcal{F}_{\text{ext}}} |m_f| + \sum_{P_{S,f} \in \mathcal{F}_{\text{int}}} |P_{S,f}| \prod_{l \in f \cap L(S)} \left(\frac{1 - t l}{1 + t l} \right)^{|m_f|} R_{S,f}(\{t l\}) + O(\rho^2),
\]
where the order \(\rho^{-F_{\text{int}}(S)+1} \) in this expansion is vanishing at \(\rho = 0 \).

We insert (38)–(40) in (37) and get the expansion
\[
\tilde{I}_G(\{m f = 0; \mu_0 = \mu l\}; \{t l\}_{l \in L(G/S)}; \{t l\}_{l \in L(G/S)}) = \left\{ 1 - 2 \rho (\mu_0 - \mu l) R_S(\{t l\}) - 2 \rho \sum_{f \in \mathcal{F}_{\text{ext}}(G)} |m_f| + \sum_{P_{S,f} \in \mathcal{F}_{\text{int}}} |P_{S,f}| \prod_{l \in f \cap L(S)} \left(\frac{1 - t l}{1 + t l} \right)^{|m_f|} R_{S,f}(\{t l\}) + O(\rho^2) \right\}
\]
\[
\tilde{I}_G(\{m f = 0; \mu_0 = \mu l; \{t l\}_{l \in L(G/S)}\}) \times I_{G/S;P_{S,f}}(\{m f\}; \mu_0; \{t l\}_{l \in L(G/S)}),
\]
where \(I_{G/S;P_{S,f}} \) is similar to \(\mu_0 \)-modified integrand \(I_{G/S} \) associated with the contracted graph, up to all terms involving \(P_{S,f} \). Removing these terms corresponds precisely to remove faces in \(\mathcal{F}_{\text{int}} \) after contraction of \(S \). Hence, (36) becomes immediate.

Proposition 2 will be useful during the subtraction procedure where a precise operator will subtract a divergent subgraph \(S \) at 0 external momenta and mass \(\mu = \mu_0 \) (with nonvanishing masses). In order to trace the parallel with the perturbative renormalization language, the leading order term, in the above expansion, will correspond either to the mass or to the coupling renormalizations depending on the number of external legs of \(S \); the next order term will correspond to a wave function renormalization if and only if \(S \) is a two-point function. Then, one will introduce appropriate counterterms for these in \(G/S \) and will pursue the recurrence. Higher order terms must be all convergent. The interested reader is conveyed to look at previous works\cite{20,27} on the multi-scale renormalization applied to the present models.

2. Meromorphic structure of the regularized amplitudes

In this section, we consider a fixed graph \(G \) and some of its subgraphs. We simplify notations and omit the dependency in the largest graph \(G \) in integrands and several expressions when no confusion might occur, such that \(L = L(G) \), \(F_{\text{int}} = F_{\text{int}}(G) \) and so forth.
Take a Hepp sector σ such that
\[0 \leq t_1 \leq t_2 \leq \ldots \leq t_L \]
and perform the following change of variables:
\[\forall l = 1, \ldots, L, \quad t_l = \prod_{k=l}^{L} x_k . \]

Consider the subgraph G_l of \mathcal{G} defined by the lines associated with the variables $t_j, j = 1, \ldots, i$. We denote $L(G_l) = i$, $F_{\text{int}}(G_l)$ the number of lines and internal faces, respectively, of G_l. Amplitude (13) of Proposition 1 in the sector σ in terms of the variables x_l finds a new form,
\[
A^\sigma_{\mathcal{G}}(\{m_f\}; D) = \lambda_{c, \mathcal{G}} \int_{[0,1]^L} \left[\prod_{l=1}^{L} dx_l \left(1 - \prod_{l=1}^{L} x_k \right)^{u_l-1} \prod_{f \in F_{\text{ext}}} \prod_{l \in f} \left(1 - \prod_{k=l}^{L} x_k \right) \right] \left(1 + \prod_{l=1}^{L} x_k \right)^{|m_f|} \\
\times \left[\prod_{l=1}^{L} x_l^{L(G_l)-1} \right]^{D} \frac{U^\sigma_{\mathcal{G}}(\{\{x_l\}\})}{U_{\mathcal{G}}(\{\{x_l\}\})},
\]
where $U^\text{odd/ev}$ are the new polynomials obtained from $U^\text{odd/ev}$ after the substitution of (44). For the moment, D is real positive. In order to recover the full amplitude $A_{\mathcal{G}}$, one sums over all possible Hepp assignments: $A_{\mathcal{G}} = \sum_{\sigma} A^\sigma_{\mathcal{G}}$. Hereunder, we will focus on $A^\sigma_{\mathcal{G}}$, and any results on the analyticity or meromorphy of $A^\sigma_{\mathcal{G}}$ straightforwardly extend to the sum over σ which is finite (with $L!$ terms) by taking the intersection domains for which these properties hold.

Focusing on the denominator of the last line of (45), we want to extract the term of minimal degree in x_l in the polynomial. The fact that this can be done follows from the homogeneity property of the polynomials stated in Lemma 2, which we will properly re-adjust using Hepp sectors. The term of minimal degree in t_l any face amplitude A^0_l is nothing but $\sum_{l \in f} t_l$. However, this term is not yet the term with minimal degree in x_k's. To obtain the monomial of minimal degree in x_k, one picks $t_f^0 = t_f^0$ with $l_f^0 = \max_{l \in f} l$. We have
\[
U^\text{odd}_{\mathcal{G}}(\{\{x_l\}\}) = \prod_{f \in F_{\text{int}}} A^0_f(\{\{x_l\}\}) = \prod_{f \in F_{\text{int}}} \prod_{\alpha=1}^{L} x_{\alpha} \left(1 + A_f^0(\{\{x_l\}\}) \right),
\]
where A_f^0 is the rest of the face amplitude after the factorization. Focusing on the first factor, it recasts as
\[
\prod_{f \in F_{\text{int}}} \prod_{\alpha=1}^{L} x_{\alpha} = \prod_{\alpha=1}^{L} x_{\alpha} \prod_{l=1}^{L} \prod_{f \in F_{\text{int}} / a \geq l_f^0} x_{\alpha} = \prod_{\alpha=1}^{L} x_{\alpha} \mid \{ f \in F_{\text{int}} / a \geq l_f^0 \} \mid.
\]
An internal face f in $F_{\text{int}}(G_l)$ is an internal face of \mathcal{G} such that its most higher index l_f^0 among $l \in f$ must be lower than i. We can conclude that $\mid \{ f \in F_{\text{int}} / l \geq l_f^0 \} \mid = F_{\text{int}}(G_l)$ and it is direct to get
\[
A^\sigma_{\mathcal{G}}(\{m_f\}; D) = \lambda_{c, \mathcal{G}} \int_{[0,1]^L} \left[\prod_{l=1}^{L} dx_l \left(1 - \prod_{l=1}^{L} x_k \right)^{u_l-1} \prod_{f \in F_{\text{ext}}} \prod_{l \in f} \left(1 - \prod_{k=l}^{L} x_k \right) \right] \left(1 + \prod_{l=1}^{L} x_k \right)^{|m_f|} \\
\times \left[\prod_{l=1}^{L} x_l^{L(G_l)-1-DF_{\text{int}}(G_l)} \right]^{D} \frac{U^\sigma_{\mathcal{G}}(\{\{x_l\}\})}{1 + U_{\mathcal{G}}(\{\{x_l\}\})},
\]
with $U_{\mathcal{G}}$ readily obtained from (46). The quantity
\[
\omega_{\sigma}(\mathcal{G}) = (L - DF_{\text{int}})(\mathcal{G})
\]
is called the convergence degree of the graph amplitude.

Before considering complex valued variables involved in this object, we will discuss its constituents. In particular, the number of internal faces $F_{\text{int}}(\mathcal{G})$ must be elaborated. $F_{\text{int}}(\mathcal{G})$ of a connected graph \mathcal{G} is discussed in Ref. 24. In our case, we have the following:
In rank $d \geq 3$, introducing $d^{-} = d - 1$,

$$F_{\text{int}}(\mathcal{G}) = -\frac{2}{(d-)!}(\omega(\mathcal{G}_{\text{color}}) - \omega(\partial \mathcal{G})) - (C_{\partial \mathcal{G}} - 1) - d^{-} N_{\text{ext}} + d^{-} - \frac{d^{-}}{4} (4 - 2n) \cdot V,$$ \hspace{1cm} (50)

where $\mathcal{G}_{\text{color}}$ is the so-called colored extension of \mathcal{G} in the sense of Subsection II A, $\partial \mathcal{G}$ is its boundary with number $C_{\partial \mathcal{G}}$ of connected components, V_k its number of vertices of coordination k, $V = \sum_k V_k$ its total number of vertices, $n \cdot V = \sum_k kV_k$ its number of half-lines exiting from vertices, and N_{ext} its number of external legs. We call $\omega(\mathcal{G}_{\text{color}}) = \sum_J g_J$ the degree of $\mathcal{G}_{\text{color}}$. $\partial \mathcal{G}$ is the pinched jacket associated with J a jacket of $\mathcal{G}_{\text{color}}$, and $\omega(\partial \mathcal{G}) = \sum_{J, g_J}$ is the degree of $\partial \mathcal{G}$. Specifically, in rank $d = 3$, $\omega(\partial \mathcal{G}) = g_{\partial \mathcal{G}}$, since the boundary graph is a ribbon graph.

- In rank $d = 2$, using the Euler characteristics, the following holds:

$$F_{\text{int}}(\mathcal{G}) = -2g_{\mathcal{G}} - (C_{\partial \mathcal{G}} - 1) - \frac{1}{2}(N_{\text{ext}} - 2) - \frac{1}{2}(2 - n) \cdot V,$$ \hspace{1cm} (51)

where \mathcal{G} is the pinched (pinched) graph associated with \mathcal{G} and we used the relation $2L = n \cdot V - N_{\text{ext}}$.

Thus, one can write both (50) and (51) under the form

$$F_{\text{int}}(\mathcal{G}) = -\frac{2}{(d-)!}(\Omega(\mathcal{G}) - (C_{\partial \mathcal{G}} - 1) + d^{-} \tilde{F}_{\text{int}}(\mathcal{G})), \hspace{1cm} \tilde{F}_{\text{int}}(\mathcal{G}) = \frac{1}{2}(2 - N_{\text{ext}} + (n - 2) \cdot V),$$ \hspace{1cm} (52)

where $\Omega(\mathcal{G}) = \omega(\mathcal{G}_{\text{color}}) - \omega(\partial \mathcal{G})$ if $d = 3$, and $\Omega(\mathcal{G}) = g_{\partial \mathcal{G}}$ if $d = 2$.

Note that the number of internal faces does not depend on D but only on the combinatorics of the graph itself. From (52), a formula for $\omega(\partial \mathcal{G})$ can be easily obtained after substituting this expression in (49). However, in the following we are interested only in bounds involving directly the degree of convergence. It is a non-trivial fact that, for any graph in this category of models, one has (see Ref. 14 and its addendum)

$$\text{either } \Omega(\mathcal{G}) = 0 \text{ or } \frac{2}{(d-)!} \Omega(\mathcal{G}) \geq d - 2 \geq 0.$$ \hspace{1cm} (53)

In a renormalization program, we are mainly interested in graphs with external legs. These are graphs with boundary, in other words graphs satisfying $C_{\partial \mathcal{G}} \geq 1$. Therefore, for any connected graph, the following is true for $d^{-} \geq 1$:

$$F_{\text{int}}(\mathcal{G}) \leq d^{-} \tilde{F}_{\text{int}}(\mathcal{G}).$$ \hspace{1cm} (54)

It is also a known fact that in any rank $d \geq 3$, the so-called melonic graphs defined such that $\omega(\mathcal{G}_{\text{color}}) = 0$ with a melonic boundary, i.e., $\omega(\partial \mathcal{G}) = 0$, and with a unique connected component on the boundary saturate this bound. Therefore, the melonic graphs have a dominant power counting and this shows that (54) is an optimal bound. Matrix models are similar. The dominant amplitudes in power counting are those with a maximal number of internal faces. These are planar graphs with $g_{\partial \mathcal{G}} = 0$ and $C_{\partial \mathcal{G}} = 1$. Hence, (54) is again saturated.

We now discuss possible interesting complexifications of the amplitude $A_{\mathcal{G}}(\{m_f\})$. So far, we have two parameters which are the dimension of the group and the theory rank d. A priori, from (48), we can define a complex integral $A_{\mathcal{G}}(\{m_f\}, D, d)$, for $D, d \in \mathbb{C}$. However, the nontrivial dependency in d in the amplitude makes the study of this function drastically complicated. We will only achieve a complexification in the standard way, i.e., by considering a complex dimension $A_{\mathcal{G}}(\{m_f\}, D)$ for $D \in \mathbb{C}$, and will undertake the dimensional regularization of an arbitrary amplitude in this variable.

a. Domain of analyticity. The analysis of $A_{\mathcal{G}}(\{m_f\}, D)$ can be undertaken as follows. From the fact that $\hat{U}_{\mathcal{G}}^{\text{ev}} = 1 + U_G''$, the last factor $\hat{U}_{\mathcal{G}}^{\text{ev}}/(1 + U_G'(\{x_i\}))$ in (48) can be bounded by a constant $k_{\mathcal{G}} = \hat{U}_{\mathcal{G}}^{\text{ev}}(\{x_k = 1\})$ depending on the graph. It is immediate to infer from (48) that, in the UV regime $x_i \to 0$,

$$\text{if } \forall i = 1, \ldots, L, \Re(\omega(\mathcal{G}_i)) > 0, \quad \text{then the amplitude converges;}$$
$$\text{if } \exists i = 1, \ldots, L, \Re(\omega(\mathcal{G}_i)) \leq 0, \quad \text{then the amplitude diverges.}$$ \hspace{1cm} (55)
Consider the subgraphs G_i associated with Hepp sectors, with positive numbers of vertices $V(G_i) \geq 1$ and lines $L(G_i) \geq 1$. The convergence of the amplitude is then guaranteed (sufficient condition) if we have

\[\Re(D) < D^\sigma = \inf_i \frac{L(G_i)}{F_{\text{int}}(G_i)} . \]

(56)

Note that if $L = 0$, the graph is actually either empty or formed by disconnected vertices, and so, $F_{\text{int}} = 0$ and there are no divergences. On the other hand, setting $F_{\text{int}} = 0$ means already that we have no divergences. We are led to the following bound, $\forall i$:

\[\Re(D) < \frac{1}{d^\sigma} \leq \frac{2L}{d^\sigma (2L + 2(1 - V))} (G_i) \leq \frac{L(G_i)}{d^\sigma F_{\text{int}}(G_i)} \leq \frac{L(G_i)}{F_{\text{int}}(G_i)} , \]

(57)

where uses have been made of (54), and the fact that either $V(G_i) = 1$ or $V(G_i) > 1$ and so $\frac{2L}{d^\sigma (2L + 2(1 - V))} (G_i) \geq \frac{2L}{d^\sigma (2L)} (G_i)$.

We infer that the amplitudes $A_{G}(\{m_f\}, D)$ and $A_{G}(\{m_f\}, D)$ are convergent and analytic in D in the strip

\[\mathcal{D}^\sigma = \left\{ D \in \mathbb{C} \mid 0 < \Re(D) < \frac{1}{d^\sigma} \right\} . \]

(58)

At the first sight, increasing the rank of the theory induces a reduction of the analyticity strip of the amplitude.

Now, we proceed further and extend $A_{G}(\{m_f\}, D)$ to a complex function of D in the strip $1/d^\sigma \leq \Re(D) \leq \delta$, where δ plays the role of the initial dimension of the group that is either $\delta = 1$ for the models Φ^4_3 and Φ^4_{2}, or $\delta = 2$ for Φ^4_{2}.

Theorem 1 (Extended domain of analyticity). Consider a tensor model Φ^k_{d}, $(\delta, d, k_{\text{max}}) \in \{(1,3,4), (2,2,4), (1,2,2n)\}$, for $n \geq 2$. Let G be one of its graphs and define σ an associated Hepp sector of G. For Φ^k_{d}, if one of the following conditions is fulfilled:

(a) $\forall i$, $N_{\text{ext}}(G_i) > k_{\text{max}}$,

(b1) for $d = 2$, $\forall i$, $\Omega(G_i) > 0$,

(b2) for $d = 3$, $\forall i$, $\{N_{\text{ext}}(G_i) > 2, \Omega(G_i) > 0\}$ or $\{N_{\text{ext}}(G_i) > 0, \Omega(G_i) > 1\}$,

(c) $\forall i$, $C_{G_i} > 1$,

(59)

and, specifically for Φ^{2n}_{2}, $n \geq 2$, if

(d) $\forall i$, $V(G_i) > 1$,

(e) $\forall i$, $N_{\text{ext}}(G_i) = k_{\text{max}}$,

(60)

then $A_{G}(\{m_f\}, D)$ converges and is analytic in the strip

\[\mathcal{D} = \left\{ D \in \mathbb{C} \mid 0 < \Re(D) < \delta + \varepsilon_{G} \right\} \]

(61)

for ε_{G} a small positive constant depending on the graph.

Let us comment that although in the following proof of Theorem 1, the main variables k_{max}, d^σ are always fixed and are expressed simply, we first perform general calculations and then sometimes use the specific values of k_{max} and d^σ. Foreseeing the generic dimensional regularization of the other tensor models in higher ranks, the method used and the several relations generated will remain valid. As such, these are worth to be listed.

Proof of Theorem 1. • We shall start by the models Φ^4_{3} and Φ^4_{2}. First, one notices that the following relations hold:

\[\delta d^\sigma - 1 > 0, \quad (\delta d^\sigma - 1)k_{\text{max}} - 2\delta d^\sigma = 0, \]

(62)

where $k_{\text{max}} = 4$ stands for the maximal valence allowed for vertices in these models.
Consider A_G^σ and the subgraphs G_i associated with a Hepp sector σ, with positive numbers of vertices $V(G_i) \geq 1$ and lines $L(G_i) \geq 1$ such that (a) holds, i.e., for all i, $N_{ext}(G_i) > k_{\text{max}}$ holds. We define $q(G_i) = N_{ext}(G_i) - k_{\text{max}} > 0$, $V_c = \sum_{k=2}^{k_{\text{max}}-1} V_k = V_2$, and $n \cdot V_c = \sum_{k=2}^{k_{\text{max}}-1} kV_k = 2V_2$ and write

$$
\frac{L(G_i)}{F_{inf}(G_i)} \geq \frac{L(G_i)}{d^F F_{inf}(G_i)} \geq \frac{(n \cdot V - N_{ext}(G_i))}{d^2 (2N_{ext} + (n-2)V(G_i))}
\geq \frac{(k_{\text{max}}(V_{max} - 1) + n \cdot V_c - q(G_i))}{d^2 (2k_{\text{max}} - 2V_{max}(G_i))} \geq \frac{(k_{\text{max}}(V_{max} - 1) - q(G_i))}{d^2 (2k_{\text{max}}(V_{max} - 1) - q(G_i))},
$$

where we used $(n - 2)V_c = 0$ in an intermediate step. Two cases may occur (A) if $V_{max} - 1 = 0$, this means that the graph is formed with a unique vertex (forgetting mass vertices). This is a tadpole graph and certainly, $N_{ext} \leq k_{\text{max}}$, which is inconsistent with our initial assumption. (B) We consider then $V_{max} - 1 > 0$ and obtain

$$
\frac{L(G_i)}{F_{inf}(G_i)} > \frac{1}{d^2}(1 + \frac{2}{k_{\text{max}} - 2} + \varepsilon_G^\sigma) \geq \frac{1}{d^2}(\frac{k_{\text{max}}}{k_{\text{max}} - 2} + \varepsilon_G^\sigma) > \delta \geq \mathcal{R}(D),
$$

$$0 < \varepsilon_G^\sigma < \inf_i \frac{2q(G_i)}{|k_{\text{max}} - 2(V_{max} - 1) - q(G_i)|},
$$

where (62) has been used to get δ. We can then introduce $\varepsilon_G^\sigma = \varepsilon_G^\sigma / d^\sigma$ and $0 < \varepsilon_G^\sigma = \inf_{\sigma} \varepsilon_G^\sigma$ so that (61) holds under condition (a).

Now, we focus on conditions (b1) and (b2). Assume $\Omega(G_i) > 0$ for all i. It immediately implies that $2\Omega(G_i)/(d^\sigma)! \geq d^\sigma - 1$ (53). However, this bound is quite loose. For $d = 2$, clearly $2\Omega(G_i) = 2^{q(G_i)} > 1$ while $d^\sigma - 1 = 0$. Meanwhile, for $d = 3$, it is still a good bound as $2\Omega(G_i)/(d^\sigma)! = \Omega(G_i) \geq d^\sigma - 1 = 1$. Hence for generic $d = 2, 3$, assuming $\Omega(G_i) > 0$, we shall use $2\Omega(G_i)/(d^\sigma)! \geq 1$. One finds a bound on the number of internal faces as

$$F_{inf}(G_i) \leq -1 + d^F F_{inf}(G_i).
$$

We then obtain new bounds on the ratio

$$
\frac{L(G_i)}{F_{inf}(G_i)} \geq \frac{\frac{1}{2}(n \cdot V - N_{ext}(G_i))(G_i)}{-1 + d^F F_{inf}(G_i)} \geq -1 + \frac{2V}{2} - N_{ext}(G_i)(G_i)\}
\geq 1 + \frac{2V_{max}}{2} - N_{ext} - \frac{N_{ext}}{(k_{\text{max}} - 2) - V(G_i)} > 1 + \frac{2}{k_{\text{max}} - 2} + \varepsilon_G^\sigma \geq 1 + \varepsilon_G^\sigma > \delta \geq \mathcal{R}(D),
$$

$$0 < \varepsilon_G^\sigma < \inf_i \frac{2N_{ext}(G_i)}{|k_{\text{max}} - 2(V_{max} - 1) - N_{ext}}(G_i)|.(G_i)\}
$$

- If $d = 2$, for all $N_{ext}(G_i) > 0$ and $\Omega(G_i) > 0$, we get the bound

$$
\frac{L(G_i)}{F_{inf}(G_i)} \geq \frac{(n \cdot V - N_{ext}(G_i))}{(n-2)V - N_{ext}(G_i) + 1} \geq \frac{2V}{2} - N_{ext}(G_i) + 1\}
\geq 1 + \frac{2}{k_{\text{max}} - 2} + \varepsilon_G^\sigma \geq 1 + \varepsilon_G^\sigma > \delta \geq \mathcal{R}(D),
$$

$$0 < \varepsilon_G^\sigma < \inf_i \frac{2N_{ext}(G_i)}{|k_{\text{max}} - 2(V_{max} - 1) - N_{ext}}(G_i)|.(G_i)\}
$$

- For the last case of the rank $d = 3$ imposing that $N_{ext}(G_i) > 0$ and $\Omega(G_i) > 1$, one has a better bound $F_{inf}(G_i) \leq d^F F_{inf}(G_i)$, and the rest of the proof is similar to (67).

Hence, setting $\varepsilon_G^\sigma = \varepsilon_G^\sigma / d^\sigma$ and taking the intersection of domains for all Hepp sectors, one recovers (61) under statements (b1) and (b2).

Now, we assume that (c) holds, i.e., $C_{\partial G_i} > 1$ for all i. The number of internal faces is again bounded in the same way as (65). For the rank $d = 2$, the analysis can be redone in the same way as (b1) and allows us to conclude. For the rank $d = 3$, we have another piece of information on the number of external legs: $N_{ext}(G_i) \geq 2C_{\partial G_i} > 2$ (an important fact to notice is that each component
of the boundary passes through necessarily at least two external legs in a complex model). Thus, the analysis of above case (b2) applies once again and leads to the same conclusion. This achieves the proof of the analyticity domain of amplitudes in the models $\phi=2\Phi^2$ and $\phi=\Phi^4$.

- Let us discuss the tower of matrix models $\phi\Phi^{2n}$. We shall first prove that the analyticity domain extends when $d(V(G)_i) > 1$ holds. It is direct to achieve this by noting

$$\frac{L(G_i)}{F_{\inf}(G_i)} \geq \frac{(n-V-N_{ext})(G_i)}{(2-N_{ext}+(n-2)V)(G_i)} \geq 1 + \frac{2(V-1)(G_i)}{(2-N_{ext}+(n-2)V)(G_i)} > 1 + \epsilon ,$$

Then the analyticity domain of A_G extends to $g < \epsilon$.

The fact that the domain extends under assumption (d) has a consequence for the same study now under conditions (a) and (e). Meanwhile, the reason that under (b1) and (c) the domain extends as well is derived simply from the similar situation of the model $\phi\Phi^2$.

- Consider all graphs G_i such that (a) or (e) holds then $N_{ext}(G_i) = k_{\max}$. It implies that either we are using a number of vertices larger than 1 or a unique vertex with the maximal valency $k_{\max} = N_{ext}(G_i)$ and no lines are present in the graph. Clearly, both situations lead to a convergent amplitude.

- Consider now (b1). For all i, $\Omega(G_i) > 0$ such that (65) holds now. The calculations are similar to previous case (b1). We have, for all $N_{ext}(G_i) > 0$,

$$\frac{L(G_i)}{F_{\inf}(G_i)} \geq \frac{(n-V-N_{ext})(G_i)}{(2-N_{ext}+(n-2)V)(G_i)} \geq 1 + \frac{2V}{(n-2)V-N_{ext}}(G_i) > 1 + \epsilon \sigma g > \delta > \Re(D),$$

Finally, assuming (c) so that $C_{\partial G_i} > 1$, we use again (70) to complete the proof.

b. Meromorphic structure. The next task is to prove the meromorphic structure of the amplitudes $A_g\{m_j\}, D$ on the domain D when the conditions listed in Theorem 1 are dropped.

From Theorem 1, the only cases which lead to divergent amplitudes can be listed as follows:

(iii) In the Φ^4 model, $\exists i$, such that $N_{ext}(G_i) \leq 4 = k_{\max}$ with $C_{\partial G_i} = 1$ and a. $\Omega(G_i) = 0$ (melonic with melonic boundary) and $N_{ext}(G_i) = 4$,

b. $\Omega(G_i) = 0$ (melonic with melonic boundary) and $N_{ext}(G_i) = 2$,

c. $\Omega(G_i) = 1$ (non-melonic with melonic boundary) and $N_{ext}(G_i) = 2$.

(ii) In the Φ^2 model, $\exists i$, such that $N_{ext}(G_i) \leq 4 = k_{\max}$ with $C_{\partial G_i} = 1$ and a. $\Omega(G_i) = 0$ (planar) and $N_{ext}(G_i) = 4$,

b. $\Omega(G_i) = 0$ (planar) and $N_{ext}(G_i) = 2$.

(iii) In the Φ^{2n} model, $\exists i$, such that $V = V_2(G_i) = 1$, $k \leq n = k_{\max}/2$, $N_{ext}(G_i) < 2k$ with $C_{\partial G_i} = 1$ and $\Omega(G_i) = 0$ (planar).

The above list of divergent graphs matches with the one issued in Ref. 27.

We come back to the integrand of amplitude (48) and focus on the following function:

$$I_G^\sigma_x(\{x_i\}, \{m_j\}, D) = \left[\prod_{i=1}^{L} \left(\frac{1 - \prod_{k=1}^{L-x_k} x_k^{\mu-1}}{1 + \prod_{k=1}^{L-x_k} x_k^{\mu+1}} \right) \right]^{d (\{x_i\})} \left(\frac{1 - \prod_{k=1}^{L-x_k} x_k^{\mu-1}}{1 + \prod_{k=1}^{L-x_k} x_k^{\mu+1}} \right)^{d (\{x_i\})}.$$ (71)

Since all x_i are positive, $I_G^\sigma_x$ is a continuous function in the x_i variables and admits a simultaneous Taylor series expansion in the x_i’s around $x_i = 0$ for suitably defined mass and a set of external momenta.

At this point, we can use a strategy close to the one in Ref. 68. We perform a Taylor expansion in the x_i’s before integrating them and get the poles and meromorphicity conditions on the amplitude using divergent subgraphs.

Consider a sequence of integers n_i, $i = 1, \ldots, L$, and the Taylor operator T_n^σ acting on a function $f(x) = T_n^\sigma f(x) = \sum_{q=0}^{n} x^q f^{(q)}(0)/q!$. Note that $1 - T_n^\sigma$ is the Taylor remainder that we will choose in the integral form.
\[(R^{n+1} f)(x) = \int_0^1 \frac{x^{n+1}(1 - \beta)^n}{n!} f^{(n+1)}(\beta x) \, d\beta. \]

(72)

Define

\[
\mathbb{I} = \sum_{I \subset [1, L]} \left[\prod_{j \in I} T_{x_j}^{\sigma_j} \right] \left[\prod_{j \notin I} (1 - T_{x_j}^{\sigma_j}) \right],
\]

where \(I = \emptyset \) is included in the summation, which acts on functions with several variables \(x_j \) and the operator \(\mathbb{I} \) acting on the amplitude \(A_G^\sigma \) such that

\[
(\mathbb{I} \cdot A_G^\sigma)({m_f}, D) = \lambda_c, G \int_{[0,1]^L} \left[\prod_{i=1}^L d\xi_i \right] \left[\prod_{i=1}^L x_i^{\omega_i(G_i) - \frac{\sigma_i}{2}} \right] \prod_{j \notin I} x_j^{\omega_j(G_j) + n_j},
\]

(74)

Expanding this expression, one gets

\[
(\mathbb{I} \cdot A_G^\sigma)({m_f}, D) = \lambda_c, G \sum_{I \subset [1, L]} \sum_{q_i=0, \ldots, q_i, \omega_i \in D} \left[\prod_{i \in I} x_i^{\omega_i(G_i) - \frac{\sigma_i}{2}} \right] \prod_{j \notin I} x_j^{\omega_j(G_j) + n_j},
\]

(75)

where \(\mathbb{I}^\sigma \) is a function with the same continuous properties as \(I_G^\sigma \), which can be again bounded. Now the integration over \(x_i \)'s, \(i \in I \), gives meromorphic functions of the form

\[
\frac{c_{\lambda, m_f, \mu}}{\omega_{G_i} + q_i} = \frac{c_{\lambda, m_f, \mu}}{L(G_i) - DF_{\text{int}}(G_i) + q_i},
\]

(76)

with \(c_{\lambda, m_f, \mu} \) a constant and with poles at rational values in \(D \) (\(L, F_{\text{int}} \), and \(q_i \) are indeed integers). These poles are isolated. The remaining variables \(x_j, j \notin I \), can be integrated if

\[
\Re(\omega_{G_j} + n_j + 1) > 0, \quad \forall j \notin I,
\]

(77)

which implies

\[
0 < \Re(D) < \frac{1}{d} \left(1 + \inf_{j \notin I} \frac{n_j + 1}{(L - V(G_j) + 1)} \right).
\]

(78)

We are ensured that, by taking \(n_j \) large enough, the integral in \(x_j, j \notin I \), is analytically continued for all complex \(D \). Then, the result is valid for any Hepp sector \(\sigma \) and, then extended to \(\mathbb{I}_G \) by summing over a finite number of Hepp sectors and using their intersection domain. Therefore, the following statement holds.

Theorem 2 (Meromorphic structure of the amplitudes). The amplitude \(A_G({m_f}, D) \) of the model \(\mathcal{G}^\text{max}_d \) (listed above) is a meromorphic function in \(D \in \mathbb{C} \).

Now, given one of conditions (di)-(diiii), we investigate the amplitude behavior in a strip

\[
0 < \Re(D) < \delta + \varepsilon G \quad \text{for} \quad \varepsilon G \quad \text{small enough and analyse its poles}. \]

In particular, we want to prove that for large \(q_i \) (larger than or equal to 2), there are no poles and term (76) becomes simply analytic in \(D \).

Corollary 1. The amplitude \(A_G({m_f}, D) \) of the model \(\mathcal{G}^\text{max}_d \) (listed above) is a meromorphic function in the strip,

\[
\mathcal{D} = \{ D \in \mathbb{C} \mid 0 < \Re(D) < \delta + \varepsilon_G \}
\]

(79)
for ε_G a small positive quantity depending on the graph G, and $D_0 = \delta$ is certainly a pole if $V_2(G) = 0$.

Proof: We know that if, for some i, G_i leads to divergences, it must lead to (76) and must be described by one of conditions (di)–(dii).

- For a 4-point subgraph G_i under conditions (dia) or (diia), the integration over x_i yields a meromorphic function $A_{4pt,i}(D)$ like (76) and we get a pole at

$$D_{1;i} = \frac{2}{k}[1 + \frac{V_2 + q_i}{2(V_4 - 1)}(G_i)] = \delta + \frac{V_2 + q_i}{d(V_4 - 1)}(G_i), \quad V_4(G_i) - 1 > 0. \quad (80)$$

The last condition on V_4 is imposed since we want $N_{\text{ext}} = 4 = k_{\text{max}}$ (as previously discussed, this is only possible if there is a number of 4-valent vertices strictly greater than 1). Assuming $q_i = 0$, then there is a pole at $D_{1,0} = \delta + \frac{V_2}{d(V_4 - 1)}(G_i)$. If $q_i = 0$ and $V_2(G_i) = 0$, there is a unique pole $D_0 = \delta$ emerges and $A_{4pt,i}(D)$ is analytic everywhere else.

Let us assume that $V_2 + q_i \neq 0$, so $V_2 + q_i \geq 1$. We use the estimate $0 < \varepsilon(G_i) < \frac{1}{\delta(V_4 - 1)(G_i)}$, to get an analytic function $A_{4pt,i}(D)$ in a small strip beyond δ.

- Under condition (diii), a $2k'$-point subgraph G_i of the model Φ^2_2 has a pole at

$$D'_{1;i} = \delta + \frac{q_i}{d(k - k')(G_i)}, \quad (81)$$

where $2k$ is the vertex valence and $N_{\text{ext}} = 2k' < 2k$. If $q_i = 0$, then there is a single pole at $D_0 = \delta$, and at the vicinity of D_0, $A_{2k',i}(D)$ is analytic. With a similar argument as above, if $q_i \neq 0$, it is immediate that $A_{2k',i}(D)$ is certainly analytic for a given estimate of ε_G such that $0 < \varepsilon_G < \frac{1}{\delta(k - k')}$. If $q_i = 0$ or $q_i = 1$, there is a pole associated with each of these two cases,

$$D'_{2,0} = \delta + \frac{V_2}{d(V_4 - 1)}, \quad D'_{2,1} = \delta + \frac{V_2 - 1}{d(V_4 - 1)}. \quad (84)$$

respectively.

We have listed all poles in the amplitudes $A_{4pt/2pt/2k';i}(D)$ which are at most 2 and are in the strip $\delta + \varepsilon(G_i)$. Taking again $\varepsilon_G = \inf_i \varepsilon(G_i)$, among all diverging subgraphs, we can certainly find a strip $0 < \Re(D) < \delta + \varepsilon_G$ in which A_{G}' is meromorphic. The fact that $D = \delta$ is necessarily a pole in A_{G}' if $V_2(G) = 0$ can be directly observed by putting $V_2(G) = 0$ in the above study. Using the same previous arguments and summing over Hepp sectors, we achieve the proof of the statement for A_G. \hfill \square

B. Towards a renormalization

With the amplitude expansion (Proposition 2) and the meromorphicity of the amplitudes, one could, in principle, find a renormalization program for the models studied here. In the following, we give only a few hints of the procedure whose details can be long.
First, the standard definition of the subtraction operator can be applied. The discrepancy between the present study and the formalism therein is that we are considering a radically different set of divergent subgraphs. We will only sketch the definition of the subtraction operator (details can be found in the above reference).

We introduce the operator \(\tau \) as the generalized Taylor operator defined as follows: let \(f(x) \) be a function such that \(x^{-\epsilon}f(x) \) is infinitely differentiable at \(x = 0 \), where \(\nu \) might be complex. One defines

\[
\tau^\nu_x f(x) = x^{-\epsilon} - \tau^\nu_x (x^\epsilon f(x)), \quad T^{m\geq0}_x (f) = \sum_{k=0}^{m} \frac{x^k}{k!} f^{(k)}(0), \quad T^{m<0}_x (f) = 0, \tag{85}
\]

where \(\xi \) is an integer obeying \(\xi \geq -E'(\nu) \), \(E'(\nu) \) is the smallest integer \(\geq \Re(\nu) \), and \(\epsilon = E'(\nu) - \nu \). The definition of \(\tau^\nu_x \) is, in fact, independent of \(\epsilon \). \(\tau^\nu_x \) acting on \(f \) returns the value \(x^\nu T^{\nu-E'(\nu)}_x (x^{-\nu} f(x)) \). Hence, if \(n < E'(\nu) \), then one gets 0, and if \(n \geq E'(\nu) \), \(\tau^\nu_x \) locates the poles depending on \(\nu \). Now, on a \(C^\infty \) differential function \(f \), with \(\nu = 0 \) and \(E'(\nu) = 0 = \epsilon \), we have \(\tau^\nu_x (f)(x) = T^\nu_x (f)(x) \), where we can choose \(\epsilon = 0 \).

Consider a subgraph \(S \subset G \) and a function \(f(\{t_i\}) \) on the graph \(G \), \(l \in \mathcal{L}(G) \). We associate \(S \) with the following operator:

\[
\tau^\nu_{\rho} f(\{t_i\}) = \left[\tau^\nu_\rho f(\{\rho t_1\} \in \mathcal{L}(S); \{t_i\} \in \mathcal{L}(\tilde{G}/S)) \right]_{\rho=1}. \tag{86}
\]

Finally, one defines the subtraction operator acting on amplitudes as

\[
R = 1 + \sum_{\tilde{S}} \prod_{S \in \tilde{S}} (-\tau^{-L(S)}_S) \triangleright, \tag{87}
\]

where the sum is performed over the set \(\tilde{S} \) of all forests of connected one-particle irreducible divergent subgraphs, and the symbol \(\triangleright \) indicates that the operator \(R \) must act on the \(\mu_0 \)-modified integrand of a given \(\mu_0 \)-subtracted amplitude. We must emphasize that, in the present context of simple tensorial field theories, the notions of connectedness of a graph and of one-particle irreducible graph keep their usual meaning (this is not the case in other more sophisticated tensorial field theories).

On an amplitude, we consider the following basic operator action:

\[
\prod_{S \in \tilde{S}} (-\tau^{-L(S)}_S) I_\rho(\{m_f\}; \mu_0; \{t_i\}) = \prod_{S \in \tilde{S}} (-\rho^{\frac{\lambda+S}{\mu+S}} \rho^{\frac{\lambda+S}{\rho+S-D\text{Inf}(S)} I_{\rho,G,S} + \rho S I''_{G,S} + O(S^2)}) \big|_{\rho=1} \\
= \prod_{S \in \tilde{S}} (-\rho^{\frac{\lambda+S}{\mu+S}} \rho^{\frac{\lambda+S}{\rho+S-D\text{Inf}(S)} I_{\rho,G,S} + \rho S I''_{G,S} + O(S^2)}) \big|_{\rho=1} \\
= \prod_{S \in \tilde{S}} (-\rho^{\frac{\lambda+S}{\mu+S}} \rho^{\frac{\lambda+S}{\rho+S-D\text{Inf}(S)} I_{\rho,G,S} + \rho S I''_{G,S} + O(S^2)}) \big|_{\rho=1} \\
= \prod_{S \in \tilde{S}} (-\rho^{\frac{\lambda+S}{\mu+S}} \rho^{\frac{\lambda+S}{\rho+S-D\text{Inf}(S)} I_{\rho,G,S} + \rho S I''_{G,S} + O(S^2)}) \big|_{\rho=1} \\
= \prod_{S \in \tilde{S}} (-\tau^{-L(S)+E(D\text{Inf}(S))}_S) I_{\rho,G,S}(\{m_f\}; \mu_0; \{t_i\}) \big|_{\rho=1}, \tag{88}
\]

where \(I_{\rho,G,S} \) and \(I''_{G,S} \) can be read off in (36) of Proposition 2, \(E(-x) \) is the integer part of \(\Re(-x) = -\Re(x) \), \(I_{\rho,G,S}(\{\rho t_i\} \in \mathcal{L}(S)) = \rho^{\frac{\lambda+S}{\rho+S-D\text{Inf}(S)} I_{G,S}(\{\rho t_i\} \in \mathcal{L}(S)) \), and \(I_{\rho,G,S} \) is a function admitting a series expansion in \(\rho S \sim 0 \) with coefficients depending on \(D \). The last equation is obtained keeping in mind that \(\epsilon_S = E'(-D\text{Inf}(S)) + D\text{Inf}(S) \), and since \(-D\text{Inf}(S) \leq 0 \), then \(E'(-D\text{Inf}(S)) = E(-D\text{Inf}(S)) = -E(D\text{Inf}(S)) \).
V. POLYNOMIAL INVARIANTS

We study now in details the polynomials obtained in parametric amplitudes (13). \(U^{\text{odd/ev}} \) will be referred to the first Symanzik polynomial associated with the model amplitude. Since \(\tilde{W}_G \) is not a polynomial, it cannot be directly called the second Symanzik polynomial. Nevertheless, we can study its properties as well. It is worth emphasizing that the following analysis does not specially focus on the models listed in (22). Amplitude (13) is completely general for a generic rank \(d \geq 2 \) Abelian model with particular linear kinetic term. Therefore, the following study is valid for any model of this kind using tensor invariant vertices (in the sense of definition (8)) and rank \(d \) stranded lines. Furthermore, as one can realize in a straightforward manner, the definitions of the polynomial \(U^{\text{odd/ev}}_G \) and function \(W_G \) can be extended to the larger class of rank \(d \) colored tensor graphs as defined in Subsection II A. One must simply observe that, in the definition of the polynomials \(U^{\text{odd/ev}}_G \) and \(W_G \), the factorization in faces and the bi-coloring of strands play the main roles. The following analysis only relies on these ingredients which are in both models (the unitary invariant and rank \(d \) colored models). In the following, we will not distinguish the study between these frameworks. Any graphs which might come from these models are simply referred to rank \(d \) color tensor graphs. Finally, the particular case of \(d = 2 \) might generate some peculiarities that we will often address in a separate discussion. For higher rank \(d > 2 \) illustrations, we will restrict ourselves to \(d = 3 \) which is already not trivial. The higher rank case can be deduced from the \(d = 3 \) case.

The usual Symanzik polynomials must satisfy some invariance properties under specific operations on their graphs. In scalar quantum field theory, it is well-known that such polynomials satisfy a contraction/deletion rule, hence, by a famous universality theorem, define Tutte polynomials.\(^{60}\) For the GW model in 4D, the polynomials on ribbon graphs discovered in the parametric representation of this model\(^{83}\) were deformed versions of the Bollobás-Riordan polynomial.\(^{73,74}\) The recurrence relation obeyed by these invariants is however much more involved\(^{70}\) (a four-term recurrence using Chmutov partial duality\(^{75}\)). Our remaining task is to investigate the types of relations which are satisfied by the identified functions \(U^{\text{odd/ev}}_G \) and \(\tilde{W}_G \) (\(W_G \) will satisfy relations which can be inferred from these points).

The rest of the section is divided into three parts. The first part focuses on the study of \(U^{\text{odd/ev}}_G \) and \(\tilde{W}_G \) and the type of modified relation that they satisfy. In rank 2, a connection with the work by Krajewski \textit{et al.}\(^{70}\) is rigorously established in the second point. Motivated by the two initial discussions, in the third part of this section, we identify a polynomial that we call of the second kind, \(U_G \), which is stable under a contraction reduction. To the best of our knowledge, it is for the first time that such a rule without referring to the deletion operation can be defined on a graph polynomial invariant. As an intriguing object to be exemplified, we list its properties and include several illustrations. The definition of the new polynomial is however totally abstract and, of course, it remains an open question if there exists a quantum field theory having such a polynomial appearing in its parametric amplitudes.

Few remarks must be made at this stage. The cut of an edge in a tensor invariant theory is performed in the same way as is done in the colored case as discussed in Subsection II A (see Fig. 8).
However, the contraction of an edge in a graph in an invariant tensor model must be understood as the contraction of a stranded line of color 0 with the same rule explained in Subsection II A (see Fig. 9). It turns out that our final statements are always independent on the type of models either tensor invariant or colored. Finally, in the following a rank d graph can either be a ribbon graph with half-ribbons or a rank $d > 2$ colored tensor graph (either in the sense of Section II or coming from the gluing of rank d unitary tensor invariants).

A. Polynomials of the first kind

The objects of interest are the polynomials $U_{\tilde{G}}^{\text{od/ev}}$ and \tilde{W}_G. These polynomials are called of the first kind.

Ordinary operations of contraction and deletion of edges of a graph G have been defined in Section II. We recall some terminology and give precisions.

- Given an edge e and a face f, we write $e \in f$ when the face f passes through e (we also say that “e belongs to f”). If f passes through e exactly α times, we denote as $e^\alpha \in f$. Note that $0 \leq \alpha \leq 2$. From now, $e^1 \in f \equiv e \in f$.
- In the rank $d > 2$, the theory is colored and always $e^\alpha \in f$, α is necessarily 1.
- In this section, “contraction” always refers to soft contraction.
- Given $e^\alpha \in f$, we denote f/e (respectively $f - e$, $f \backslash e$) the face resulting from f after the contraction (respectively the deletion, the cut) of e in G yielding G/e (respectively $G - e$, $G \backslash e$).

The following statement holds.

Lemma 3 (Face contraction). Let e be an edge of G a rank $d \geq 2$ graph, which is not a loop and consider $e^\alpha \in f$, $e \in F_{\text{ex}}$. We have the following:

(i) If $\alpha = 1$, then

$$A_f^{\text{od}} = t_e A_f^{\text{cv}} + A_f^{\text{od}}; \quad A_f^{\text{cv}} = t_e A_f^{\text{od}} + A_f^{\text{cv}}.$$ \hfill (90)

(ii) If $\alpha = 2$, then

$$A_f^{\text{od}} = 2t_e A_f^{\text{cv}} + (t_e^2 + 1)A_f^{\text{od}}; \quad A_f^{\text{cv}} = 2t_e A_f^{\text{od}} + (t_e^2 + 1)A_f^{\text{cv}}.$$ \hfill (91)

When e is a trivial untwisted (respectively twisted) loop, then one can only have $e \in f$ (respectively $e^2 \in f$) and (i) (respectively (ii)) holds.

Proof. Clearly, the even face polynomial and odd face polynomial play a symmetric role. We shall prove the claims for the odd case, from this the even case can simply be inferred.

Let us assume that $e \in f$. This means that the factor t_e appears just once in A_f^{od} so that

$$A_f^{\text{od}}(\{t_e\}) = \left[\sum_{A \in f, e \in A} + \sum_{A \in f, e^2 \in A} \right] \prod_{l \in A} t_l.$$ \hfill (92)

The subsets $A \subset f$ such that $e \notin A$ correspond exactly to subsets $A' \subset f/e$. This shows that $\sum_{A \in f, e \in A} \prod_{l \in A} t_l = A_f^{\text{od}}$. Meanwhile, the subsets $A \subset f$ such that $e \in A$ have a common factor t_e. This simply factorizes and yields the even monomials generated by $A \subset f/e$.

Assume now that $e^2 \in f$. The terms $(1 + t_e^2)$ and $2t_e$ must appear in A_f^{od}. We have

$$A_f^{\text{od}}(\{t_e\}) = \left[\sum_{A \in f, e \in A} + \sum_{A \in f, e^2 \in A} + \sum_{A \in f, ee^2 \in A} \right] \prod_{l \in A} t_l.$$ \hfill (93)

One notices that factoring out t_e^2 common in all monomials in the middle sum, the odd monomials generated by $A \subset f$, such that $e^2 \in A$ and $l \in A, l \neq e$, are precisely those generated by $A \subset f$ such that $e \notin A$. Moreover, the last sum coincides with $A_{f/e}^{\text{od}}$ for the same reason invoked above (in the case $e^1 \in f$). Then the two last sums are nothing but $(t_e^2 + 1)A_f^{\text{od}}$. In the first sum in (93), after
factoring out $2e$, for the same reason as previously stated, we obtain exactly the even monomials generated by the contracted face f/e.

The last point on trivial loops can be inferred in the similar way. □

We are in position to investigate the recurrence rules obeyed by $U_{i}^{\text{od/ev}}$ in rank 2.

Proposition 3 (Broken recurrence rules for $U_{i}^{\text{od/ev}}$ in rank 2). Let G be a ribbon graph with half-ribbons, $\mathcal{F}_{\text{int}}(G)$ and $\mathcal{F}_{\text{ext}}(G)$ be its sets of internal and external faces, respectively, and e be a regular edge of G. Then, we have the following:

(i) If e belongs only to external faces then

$$U_{G}^{\text{od/ev}} = U_{G/e}^{\text{od/ev}}.$$ \hfill (94)

Furthermore, if the deletion of the edge e does not generate a new internal face $U_{G/e}^{\text{od/ev}} = U_{G/e}^{\text{od/ev}}$. If it generates a new internal face, then $A_{e}^{\text{od/ev}} U_{G/e}^{\text{od/ev}} = U_{G/e}^{\text{od/ev}}$.

(ii) If $e \in f$ and $e \not\in f'$, $f \in \mathcal{F}_{\text{int}}(G)$ and $f' \in \mathcal{F}_{\text{ext}}(G)$, we have $U_{G/e}^{\text{od/ev}} = U_{G/e}^{\text{od/ev}}$ and

$$U_{G/e}^{\text{od/ev}} = t_{e} A_{f/e}^{\text{od/ev}} U_{G/e}^{\text{od/ev}} + U_{G/e}^{\text{od/ev}}.$$ \hfill (95)

(iii) If $e \in f$ and $e \in f'$, $f \not\in f'$, and $f, f' \in \mathcal{F}_{\text{int}}(G)$, we get

$$U_{G/e}^{\text{od/ev}} = t_{e} U_{G/e}^{\text{od/ev}} + U_{G/e}^{\text{od/ev}} + t_{e}^{2} A_{f/e}^{\text{od/ev}} A_{f'/e}^{\text{od/ev}} U_{G/e}^{\text{od/ev}}.$$ \hfill (96)

(iv) If $e^{2} \in f$, $f \in \mathcal{F}_{\text{int}}(G)$, then two cases occur

(a) the deletion of e yields two internal faces f_{1} and f_{2}, then

$$U_{G/e}^{\text{od/ev}} = \begin{cases} (1 + t_{e}^{2}) U_{G/e}^{\text{od/ev}} + 2t_{e} U_{G/e}^{\text{od/ev}} + 2t_{e} A_{f_{i}^{1} f_{i}^{2}} U_{G/e}^{\text{od/ev}} \\ (1 + t_{e}^{2}) U_{G/e}^{\text{od/ev}} + 2t_{e} A_{f_{1} f_{2}} U_{G/e}^{\text{od/ev}} + A_{f_{1} f_{2}} A_{f_{1} f_{2}} U_{G/e}^{\text{od/ev}} \end{cases}.$$ \hfill (97)

(b) the deletion of e yields one internal face f_{12}.

$$U_{G/e}^{\text{od/ev}} = (1 + t_{e}^{2}) U_{G/e}^{\text{od/ev}} + 2t_{e} A_{f_{i}^{12}} U_{G/e}^{\text{od/ev}}.$$ \hfill (98)

Proof. See Appendix A. □

For special edges, the above proposition is still valid but simplifies drastically:

- If e is a bridge, then under condition (i), (94) and the following relations are all valid, and under condition (iva), (97) holds. These are the only possibilities for a bridge.

- If e is a trivial untwisted loop, under condition (i), (94) is valid, and since the contraction of a such a loop cannot create a new internal face, we always have $U_{G/e}^{\text{od/ev}} = U_{G/e}^{\text{od/ev}} = U_{G/e}^{\text{od/ev}}$. Assuming (ii), (95) holds as well. Now, under (iii), one proves that (96) is true. We do not have any further choices.

- If e is a trivial twisted loop, assuming (i) holds, (94) is valid and $U_{G/e}^{\text{od/ev}} = U_{G/e}^{\text{od/ev}}$ by definition. Under (ivb), (98) holds. These are the only cases valid for a trivial twisted loop.

Proposition 4 (Broken recurrence rules for $U_{i}^{\text{od/ev}}$ in rank $d > 2$). Let G be a rank $d > 2$ colored tensor model graph. Let e be an edge of G and $N \in [0,d]$ be the number of internal faces that pass through the edge e. Then

$$U_{G/e}^{\text{od/ev}} = \begin{cases} U_{G/e}^{\text{od/ev}} + U_{G/e}^{\text{od/ev}} \sum_{K \in [1,N]} \left[t_{e}^{K} \prod_{i \in K} A_{f_{i}/e}^{\text{od/ev}} \right] \prod_{i \in K} A_{f_{i}/e}^{\text{od/ev}} \\ U_{G/e}^{\text{od/ev}} \end{cases}$$ \hfill (99)

for $N \geq 1$, for $N = 0$.

Proof. Let us assume that $N = 0$, no internal faces pass through e. The result $U_{G/e}^{\text{od/ev}} = U_{G/e}^{\text{od/ev}}$ is direct. Let us call f_{i}, $i = 1, \ldots, N$ the internal face passing through e. We start by writing, using Lemma 3,
\[
U_{G}^{\text{od/ev}} = \prod_{f_i \in \mathcal{F}_{\text{int}}} A_{f_i}^{\text{od/ev}} \prod_{i \in \mathcal{F}_{\text{int}}} A_{f_i/e}^{\text{od/ev}} = \prod_{i=1}^{N} (t_e A_{f_i/e}^{\text{ev/od}} + A_{f_i/e}^{\text{od/ev}}) \prod_{i \in \mathcal{F}_{\text{int}}} A_{f_i}^{\text{od/ev}}
\]

\[= \sum_{K \subseteq \{1, N\}} \prod_{i \in K} (t_e A_{f_i/e}^{\text{ev/od}}) \prod_{i \in K^{c}} A_{f_i}^{\text{od/ev}} \prod_{i \in \mathcal{F}_{\text{int}}} A_{f_i}^{\text{od/ev}} \]

\[= U_{G/e}^{\text{od/ev}} \sum_{K \subseteq \{1, N\} / K \neq \emptyset} \left[t_e^{K} \left(\prod_{i \in K} A_{f_i/e}^{\text{ev/od}} \right) \left(\prod_{i \in K^{c}} A_{f_i/e}^{\text{od/ev}} \right) \right] + U_{G/e}^{\text{od/ev}} . \tag{100}
\]

One notices that Proposition 4 generalizes Proposition 3 in rank \(d = 2\) if the internal faces do not pass more than once through \(e\). In particular, (94)–(96) can be recovered from (99). Meanwhile, for trivial tensor loop edges, the result again holds. For a bridge, in a colored or invariant tensor model, all faces are necessarily external, \(^{71}\) and we have \(U_{G}^{\text{od/ev}} = U_{G/e}^{\text{od/ev}}\).

Remark 1. We notice that the polynomials \(U_{G}^{\text{od/ev}}\) do not obey stable contraction/deletion/cut rules on ribbon graphs with flags like the Tutte and Bollobás-Riordan polynomials. The interesting appearance of the face polynomials \(A_{f}^{\text{ev/od}}\), in the above broken recurrence relations, suggests the existence of a more general polynomial. We will introduce an extended version of \(U_{G}^{\text{od/ev}}\) in Subsection V C.

Proposition 5 (Modified recurrence rules for \(\tilde{W}\) in rank 2). Let \(G\) be a ribbon graph with half-ribbons, \(\mathcal{F}_{\text{int}:G}\) and \(\mathcal{F}_{\text{ext}:G}\) be its sets of internal and external faces, respectively, and \(e\) be a regular edge of \(G\). We write \(T_{i.e} = \left(\frac{t_i - t_{1/e}}{t_i + t_{1/e}} \right)^{|m|} \).

(i) Consider \(e\) belongs only to external faces, \(f\) and \(f'\). Then

\[\tilde{W}_{G} = T_{e,f} T_{e,f'} \tilde{W}_{G/e} . \tag{101}\]

Furthermore,

(a) if either \(\{f \neq f'\}\) or \(\{f = f' (e^{2} \in f)\) and the deletion of \(e\) does not generate any new internal faces\}, then

\[\tilde{W}_{G/e} = \tilde{W}_{G/e} = \tilde{W}_{G/e} . \tag{102}\]

(b) \(f = f' (e^{2} \in f)\) and the deletion of \(e\) generates a new internal face \(f''\),

\[\tilde{W}_{G/e} = \tilde{W}_{G/e} = \left(\prod_{l \in f''} T_{l.f''} \right) \tilde{W}_{G/e} . \tag{103}\]

(iii) If \(e \in f\) and \(e \in f'\), \(f \in \mathcal{F}_{\text{int}:G}\) and \(f' \in \mathcal{F}_{\text{ext}:G}\),

\[\tilde{W}_{G} = T_{e,f} \tilde{W}_{G/e} , \quad T_{e,f} \tilde{W}_{G/e} = T_{e,f} \tilde{W}_{G/e} = \left(\prod_{l \in f} T_{l.f} \right) \tilde{W}_{G} . \tag{104}\]

(iv) If \(e \in f\) and \(e \in f'\), and \(f, f' \in \mathcal{F}_{\text{int}:G}\)

\[\tilde{W}_{G} = \tilde{W}_{G/e} = \tilde{W}_{G/e} . \tag{105}\]

(a) Furthermore, if \(f \neq f'\),

\[\tilde{W}_{G/e} = \left(\prod_{l \in f} T_{l.f} \right) \left(\prod_{l' \in f'} T_{l'.f'} \right) \tilde{W}_{G} . \tag{106}\]

(b) If \(f = f'\), \((e^{2} \in f)\)

\[\tilde{W}_{G/e} = \left(\prod_{l \in f} T_{l.f} \right) \tilde{W}_{G} . \tag{107}\]
Proof: We will concentrate on the cases which can only occur in rank \(d = 2 \). These cases include \(e^2 \in f \), for some face \(f \), or when the deletion \(G - e \) can be performed. All the remaining relations will be a corollary of Proposition 6.

By cutting an external face \((f \vee e)\), or by contracting it \((f/e)\), then \(\prod_{l \in f \vee e} T_{l,f \vee e} = \prod_{l \in f/e} T_{l,f/e} \). Using this, one proves that in (102) and (103), \(\tilde{W}_{G/e} = \tilde{W}_{G \vee e} \).

Proving \(\tilde{W}_{G \vee e} = \tilde{W}_{G-e} \) (102), one must observe that \(\prod_{l \in f \vee e} T_{l,f \vee e} = \prod_{l \in f-e} T_{l,f-e} \), where \(f - e \) is the external face resulting from \(f \) in \(G - e \).

Focusing on (103), the cut graph \(G \vee e \) contains an additional external face compared to \(G - e \) (in fact, this additional external face becomes a closed face in \(G - e \)). The same external face of \(G \vee e \) generates the additional factor.

Now (104) holds for almost the same reasons mentioned above: cutting \(e \) or removing it, from the graph \(G \) cannot be distinguished by \(\tilde{W} \). The set of lines in \(f - e \) union the set of lines in \(f' - e \) is one-to-one with the set of lines in \(f \vee e \) union the set of lines \(f' \vee e \).

Concerning (105), one must pay attention that, either in \(G - e \) or in \(G/e \), the faces passing through \(e \) are internal after the operation.

We focus on (107) and note that the set of lines in \(f \) subtracted by \(e \) coincides with the set of lines of \(f \vee e \) in \(G \vee e \). Thus, after cutting \(e \) in \(G \), \(\tilde{W}_{G \vee e} \) possesses an extra factor coming from the set of lines resulting from the cut of \(f \).

Proposition 6 (Modified recurrence rules for \(\tilde{W} \) for rank \(d > 2 \)). Let \(G \) be a colored tensor graph of rank \(d > 2 \), \(\mathcal{F}_{\text{int},G} \) and \(\mathcal{F}_{\text{ext},G} \) be its sets of internal and external faces, respectively, and \(e \) be a regular edge of \(G \). Let \(\mathcal{F}_{\text{ext},e} \) (respectively \(\mathcal{F}_{\text{int},e} \)) be the set of external (respectively internal) faces going through \(e \). Then,

\[
\tilde{W}_G = \begin{cases}
\tilde{W}_{G/e} & \text{for } \mathcal{F}_{\text{ext},e} = \emptyset \\
\left(\prod_{f \in \mathcal{F}_{\text{ext},e}} T_{e,f} \right) \tilde{W}_{G/e} & \text{for } \mathcal{F}_{\text{ext},e} \neq \emptyset
\end{cases}
\]

(108)

and

\[
\tilde{W}_{G \vee e} = \left(\prod_{f \in \mathcal{F}_{\text{int},e}} \prod_{l \in f \vee e} T_{l,f} \right) \tilde{W}_G.
\]

(109)

Proof. Noting that the operation of contraction preserves the number of external (respectively internal) faces in \(G \), then in \(G/e \), we only lose the variables associated with \(e \). Then, (108) follows.

For the cut operation, one must pay attention to the fact that the internal faces in \(G \) become external faces in \(G \vee e \), whereas external faces in \(G \) generate only more external faces in \(G \vee e \). Then, (109) follows.

Some comments are in order:
- One can check now that all statements except those involving \(e^2 \in f \) or \(G - e \) in Proposition 5 can be recovered from Proposition 6.
- Notice that \(\tilde{W}_G \) is a polynomial in \(\{T_{l,f}\} \) which always satisfies a well defined recurrence relation under contraction operation. To be clearer, \(\tilde{W}_G \) is stable under contraction or cut rule.
- Discussing special edges (bridges, trivial loops), one can check that the above propositions specialize but are still valid.

B. Relations to other polynomials

The type of graphs we are treating here has been discussed in several works. However, the only polynomial that we find related to \(U^0_G \) is provided by Krajewski et al.70 in the context of ribbon graphs with flags. We do not see, at this stage, any relationships between the polynomial on rank 3 colored graphs as worked out by Avohou et al.71 and the polynomials of the present work.

In this section, we will concentrate on the relationship between the polynomial \(U^0_G \) and polynomials discussed in Ref. 70. As an outcome of this discussion, we will motivate the introduction of a new invariant \(\mathcal{U}_G \) in Sec. V C. We mention that this section is devoted exclusively to matrix model.
case or ribbon graphs. Henceforth, we simply refer ribbon graphs (possibly with flags) to graphs.

First, one must clarify the setting in which two (Hyperbolic) polynomials $HU_g(t)$ and $\tilde{HU}_g(t)$ by Krajewski et al. are found. The model considered is the GW model in D dimensions. The corresponding parametric amplitudes have been computed and give, as expected, generalized Symanzik polynomials. The first Symanzik polynomial is $HU_g(\Omega, t)$. Such an object has two kinds of variables $t = \{t_l\}$ and $\Omega = \{\Omega_l\}$ which are line or edge variables $\{\Omega_l\}$ is a new parameter important for ensuring renormalizability through the cure of the so-called UV/IR mixing).

The key relation that HU_g (the expression of HU_g can be found in Ref. 70). For the rest of the discussion, we only need the recurrence relation that this polynomial satisfies is a four-term recurrence relation of the form (omitting boundary conditions, i.e., vertices with only flags and terminal forms), for a regular edge e,

$$HU_g = t_e HU_{g-e} + t_e \Omega^2 HU_{g\vee e} + \Omega_e HU_{g^e-e} + \Omega_e \tilde{t}_e HU_{g^e\vee e},$$ \hspace{1cm} (110)$$

where G^e stands for the so-called Chmutov partial dual75 of G with respect to the edge e. This operation can simply be explained as follows: one must cut all lines in G except e, then perform a dual on the pinched graph \tilde{G}, and glue black all edges previously cut. The interest of introducing such partial dual reflects on the contraction operation: $\tilde{G}/e = G^e - e$.

It turns out that the GW model can be expressed as well as a matrix model.80 Moreover, at the limit when $\Omega \to 1$, the amplitudes of this model are of form (13). To be precise, the rank d must be fixed to 2, and since the summation over the matrix indices in the GW model is performed over \mathbb{H}^2, one obtains a modified definition of $W_g = \tilde{W}_g$. Finally, after this re-adjustment, we have the same amplitude up to a constant (a power of 2) depending on the graph. This constant has been incorporated in the definition of the polynomial, but for the ensuing discussion, this factor is totally inessential.

The problem as raised by authors, to the best of our understanding, is how to relate the new first Symanzik polynomial $HU_g(t)$ (note that in Ref. 70, HU is denoted Hug again, see Eq. (6.8) therein. For avoiding confusion, we use a different notation here) obtained in this matrix base and the limit $HU_g(1, t)$. We emphasize a series of subtleties in the comparison procedure which will make clear our next point:

- First, the polynomial $\tilde{HU}_g(t)$ was computed in an amplitude involving a closed graph, i.e., a ribbon graph without flags. In fact, it directly extends to the case of a ribbon graph with flags provided one still performs a product over closed faces. Hence, $\tilde{HU}_g = U^\text{od}_g$, up to a constant, on ribbon graphs with flags.

- Second, in order to relate $\tilde{HU}_g(t)$ and HU_g the authors introduce another polynomial called U_g (Eq. (6.12), p. 532). This polynomial is defined as

$$U_g(t) := \sum_{g \in \text{Odd}(G^*)} \prod_{l \in \text{H}(g)} t_l,$$ \hspace{1cm} (111)$$

where G^* is the dual of G. $\text{Odd}(G^*)$ is the set odd (colored) cutting spanning subgraphs of a graph G. In the previous sentence, we put in parentheses colored because, precisely, the coloring refers to the bi-coloring of vertices. It has the effect of introducing a prefactor $2^{e(G)}$ which is inessential in our discussion. An odd graph is a graph with all degrees of its vertices of odd parity. An odd cutting spanning subgraph $g \in \text{Odd}(G^*)$ is a spanning subgraph of a graph G (having all its vertices), obtained by choosing $\text{H}(g) \subset \text{H}(G)$ and $\mathcal{L}(g) \subset \text{H}(g)$ and such that g is odd.

The issue is that $U_g(t)$ is defined on open and closed graphs. And, as proved in the above reference, this quantity always coincides with $HU_g(1, t)$ and so satisfies same four-term recurrence rule (110). On closed graphs, $U_g(t) = \tilde{HU}_g(t)$ and so matches with U^od_g. However, on open graphs it is not true that $U_g(t)$ is equal to $\tilde{HU}_g(t) = U^\text{od}_g$. The reason why there certainly is a discrepancy is because U^od_g meets another formula. Indeed, since a closed face in G corresponds to a vertex in G^* which does not have any flags, we partition the vertices of G^* in two distinct subsets: $V(G^*) = V^*(G^*) \cup V^*(G^*)$, where $V \subset V^*(G^*)$ is without flags. Now considering the cutting subgraph $S(G^*)$ of G^* having a set of vertices $V(S(G^*)) = V^*(G^*)$ and a set of edges $E(S(G^*))$
containing all edges from $\mathcal{V}'(G^*)$ to $\mathcal{V}'(G^*)$ and cutting all edges from $\mathcal{V}''(G^*)$ to $\mathcal{V}''(G^*)$, we write
\[U^\text{odd}_G = \prod_{v^* \in \mathcal{V}'(G^*)} \left(\sum_{g \in \mathcal{H}E(v^*)} \prod_{l \in A} t_l \right) = \sum_{g \in \text{Odd}^3(S(G^*))} \prod_{l \in \mathcal{H}R(g) \setminus \mathcal{H}R(G)} t_l = U^3_S(G^*), \tag{112} \]
where $\mathcal{H}E(v^*)$ stands for the set of half-edges incident to v^*, and in $\mathcal{H}R(g)$, flags are labeled with the same label of the edges where they come from. $\text{Odd}^3(G)$ is set of odd cutting spanning subgraphs of a second kind: $g \in \text{Odd}^3(G)$ is defined such that $\mathcal{H}R(g) \subset \mathcal{H}R(G)$. Hence, $U^\text{odd}_G \neq U_G$ and $U^3_S(G^*)$ is the closest expression that we have found related to U_G.

Example 1: Triangle with flags. Consider the graph G as a triangle with one flag on each vertex, all in the same face (see Fig. 26). In Ref. 70, $H_{G}(1, t) = U_{G}(t)$ was already computed and it gives
\[H_{G}(1, t) = 4(t_1 + t_2 + t_3 + t_1 t_2 t_3)(1 + t_1 t_2 + t_1 t_3 + t_2 t_3). \tag{113} \]
Computing U^odd_G directly from the face amplitude formula, one has
\[U^\text{odd}_G(t) = t_1 + t_2 + t_3 + t_1 t_2 t_3. \tag{114} \]
Clearly, for open graphs the polynomials do not agree.

Let us now explain expansion (112). Consider the dual G^* of G in Fig. 26. First $\mathcal{V}'(G^*) = \{v_1\}$ (the vertex without flags), $S(G^*)$ is the graph made with v_1 with three flags labeled by 1, 2, 3 in the same way of the lines l_1, l_2, and l_3 and are associated with variables t_1, t_2, and t_3. We obtain four cutting spanning subgraphs in $\text{Odd}^3(S(G^*))$ as in Fig. 26 with contributions t_1, t_2, t_3, and $t_1 t_2 t_3$, respectively. On the other hand,
\[\text{Odd}(G^*) = \{\{l_1, l_2, l_3\}, \{l_1, l_2, l_3\}, \} = \tag{115} \]
where on each side the semi-colon in the brackets, we collect half-edges on each vertex v_1 and v_2.

Example 2: Pretzel without flags. Consider the graph G drawn in Fig. 27. We also illustrate G^c, $G - e$, $G \vee e$, $G^c \vee e$, and $G^c - e$ in that picture. We call $C(t) = (t_2 + t_3)(t_1 + t_4)(t_2 + t_3)(t_3 + t_4 + t_5)$.
For any value of t, we evaluate
\[
U_{G}^{\text{od}} = (t_{e} + t_{1} + t_{2} + t_{5}t_{2})C(t)
\]
\[
= \left[t_{e}^{2} + t_{e}t_{1} + t_{2} + t_{5}t_{2}t_{3} + t_{5}t_{1}t_{2} + t_{5}t_{1}t_{5} + t_{2}t_{5} \right] C(t),
\]
\[
U_{G}^{\text{od},e} = t_{1} + t_{2} + t_{5} + t_{4}t_{2}t_{3}C(t),
\]
\[
U_{G}^{\text{od},e} = C(t) = U_{G}^{\text{od},e,\epsilon},
\]
\[
U_{G}^{\text{od},e,\epsilon} = t_{5}(t_{1} + t_{2})C(t) = (t_{1}t_{5} + t_{2}t_{5})C(t).
\]

From this point, by observing the term $t_{1}t_{2}$ in U_{G}^{od}, one can readily check that there exists no polynomial function $p_{1}(t_{e})$ in t_{e} variable such that a relation of the type
\[
p_{1}(t_{e})U_{G}^{\text{od}} = p_{2}(t_{e})U_{G}^{\text{od},e} + p_{3}(t_{e})U_{G}^{\text{od},e,\epsilon} + p_{4}(t_{e})U_{G}^{\text{od},e,\epsilon} + p_{5}(t_{e})U_{G}^{\text{od},e,\epsilon}
\]
is satisfied. Thus, U_{G}^{od} does not obey the same relation as H_{G}. Therefore, it is not a Q_{G} polynomial in the general sense of Krajewski et al.

We understand now that U_{G}^{od} on the class of open graphs does not obey any known recurrence relations. In the tensor situation, things become worse: we do not have any clear notion of duality at the level of graphs and the notion of Chmutov dual is still not defined. This urges us to find another path to understand this object U_{G}^{od}. A natural route that we will investigate is the understanding of the notion of face amplitude that we observe to be at the heart of this theory. We will introduce an extended framework, where a generalized version of $U_{G}^{\text{od},e}$ makes sense and turns out to satisfy a proper invariance rule. This is the purpose of Sec. V C.

C. Polynomial of the second kind

First recognizing that the polynomials are sensitive to the properties of faces, we will exploit this face-structure by defining a new polynomial U_{G}. This object generalizes $U_{G}^{\text{od},e}$ and obeys a novel recurrence relations based only on contraction operation. We call it of the second kind. An extension of \tilde{W}_{G} will not be discussed for two main reasons: first, \tilde{W}_{G} is already stable under contraction, and second, the notion of parity in $U_{G}^{\text{od},e}$ which is at the core of the next developments does not appear at all in \tilde{W}_{G}. Finally, most of the ingredients used in the following have been introduced in Subsection V A.

Let G^{*} be the set of isomorphism classes of rank d tensor graphs (including ribbon graphs with half-ribbons) $\{\text{od, ev}\}$ be the set of parities (in obvious notations). Let $G \in G^{*}$ with a set of internal faces $\mathcal{F}_{\text{int},G}$ and $\mathcal{P}_{\text{int},G}$ be the power set of $\mathcal{F}_{\text{int},G}$.

Definition 7 (Generalized polynomial). Consider an element $(G, \mathcal{F}, \mathcal{F}, \epsilon, e') \in G^{*} \times (\mathcal{P}_{\text{int},G})^{\times 2} \times \{\text{od, ev}\}^{\times 2}$ such that $\mathcal{F} \cup \overline{\mathcal{F}} = \mathcal{F}_{\text{int},G}$ and $\mathcal{F} \cap \overline{\mathcal{F}} = \emptyset$. We define a generalized polynomial associated with $(G, \mathcal{F}, \mathcal{F}, \epsilon, e')$ as
\[
U_{G; \mathcal{F}, \mathcal{F}}^{\epsilon, e'}(\{t_{i}\}) = \left[\prod_{i \in \mathcal{F}} A_{l}^{\epsilon}(\{t_{i}\}) \right] \left[\prod_{i \in \overline{\mathcal{F}}} A_{l}^{\epsilon}(\{t_{i}\}) \right].
\]

Note that from the definition of U_{G}^{ϵ} (15), it is immediate to have (when using subscripts, we write $Q_{\mathcal{F}_{\text{int},G}} = Q_{\mathcal{F}_{\text{int},G}}$ for any quantity Q)
\[
U_{G; \mathcal{F}_{\text{int},G}}^{\epsilon, e'}(\{t_{i}\}) = U_{G; \emptyset, \mathcal{F}_{\text{int},G}}^{\epsilon, e'}(\{t_{i}\}) = U_{G}^{\epsilon}(\{t_{i}\}), \quad \epsilon = \text{od, ev},
\]
\[
\forall \mathcal{F} \in \mathcal{P}_{\text{int},G}, \quad U_{G; \mathcal{F}, \mathcal{F}}^{\epsilon, e'}(\{t_{i}\}) = U_{G; \mathcal{F}, \mathcal{F}}^{\epsilon, e'}(\{t_{i}\}), \quad \epsilon = \text{od, ev}
\]
for any value of e'. Furthermore, U_{G} is symmetric under the flips,
\[
U_{G; \mathcal{F}, \mathcal{F}}^{\epsilon, e'}(\{t_{i}\}) = U_{G; \mathcal{F}, \mathcal{F}}^{\epsilon, e'}(\{t_{i}\}).
\]

From these properties, the only case of interest is of $U_{G}^{\text{od, ev}}$.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 194.94.224.254 On: Wed, 06 Jan 2016 08:15:17
As a convention, for the empty graph \(\mathcal{G} = \emptyset \),
\[
U_{\emptyset, (\emptyset, \emptyset)}^{\text{odd}} = 1,
\]
and on the bare vertex graph \(\mathcal{G} = \circ \) with a unique closed face \(f \), according to (19), we have
\[
U_{e; (f), 0}^{\text{odd}} = 0, \quad U_{\emptyset; (\emptyset, f)}^{\text{odd}} = 1.
\]
Now, if it occurs that \(\mathcal{G} \neq \emptyset \) and \(\mathcal{F}_{\text{int}, \mathcal{G}} = \emptyset \), then \(\mathcal{F} = \overline{\mathcal{F}} = \emptyset \), so that
\[
U_{\mathcal{G}; (\emptyset, \emptyset)}^{\text{odd}} = 1.
\]

The following proposition follows from definitions.

Proposition 7 (Disjoint union operations). Let \(\mathcal{G}_1 \) and \(\mathcal{G}_2 \) be two rank \(d \) graphs, and let \(\mathcal{G}_1 \sqcup \mathcal{G}_2 \) be their disjoint union. Then,
\[
U_{\mathcal{G}_1 \sqcup \mathcal{G}_2; (\mathcal{F}, \overline{\mathcal{F}})}^{e, e'} = U_{\mathcal{G}_1; (\mathcal{F}_1, \overline{\mathcal{F}}_1)}^{e, e'} U_{\mathcal{G}_2; (\mathcal{F}_2, \overline{\mathcal{F}}_2)}^{e, e'},
\]
where \(\mathcal{F}_1 \cup \mathcal{F}_2 = \mathcal{F} \) and \(\overline{\mathcal{F}}_1 \cup \overline{\mathcal{F}}_2 = \overline{\mathcal{F}} \).

1. A new recurrence rule: Regular edges

We shall drop the subscript \(\mathcal{G} \) in the subsequent notations for sets. For instance, \(\mathcal{L} \) and \(\mathcal{F}_{\text{int/\text{ext}}} \) will denote the set of lines and set of faces of \(\mathcal{G} \).

- We introduce the following definition: Given a subset \(\mathcal{F} \) of internal faces, we define \(\mathcal{F} \setminus e \) to be the subset of faces corresponding to \(\mathcal{F} \) after the contraction of \(e \) in \(\mathcal{G} \).

The following statement holds.

Theorem 3 (Generalized contraction rule for \(U^{c, e} \) in rank \(d = 2 \)). Let \(\mathcal{G} \) be a ribbon graph with half-ribbons with \(\mathcal{L} \) set of lines, \(\mathcal{F}_{\text{int}} \) set of internal faces, and \((\mathcal{F}, \overline{\mathcal{F}}) \) a pair of disjoint subsets of \(\mathcal{F}_{\text{int}} \) with \(\mathcal{F} \cup \overline{\mathcal{F}} = \mathcal{F}_{\text{int}} \).

Let \(e \) be a regular edge of \(\mathcal{G} \), we have four disjoint cases:

(0) If \(e \) passes through only external faces, then
\[
U_{\mathcal{G}; (\mathcal{F}, \overline{\mathcal{F}})}^{c, e} = U_{\mathcal{G} / e; (\mathcal{F}, \overline{\mathcal{F}})}^{c, e},
\]
where \((\mathcal{F}, \overline{\mathcal{F}}) = (\mathcal{F} / e, \overline{\mathcal{F}} / e) \).

(i) If \(e \in f \), for a unique internal face \(f \in \mathcal{F} \) (the other strand of \(e \) is external), then
\[
U_{\mathcal{G}; (\mathcal{F}, \overline{\mathcal{F}})}^{c, e} = U_{\mathcal{G} / e; (\mathcal{F} / e, \overline{\mathcal{F}})}^{c, e} + t_e U_{\mathcal{G} / e; ((\mathcal{F} / e) \setminus \{f / e\}, \overline{\mathcal{F}} \cup \{f / e\})}^{c, e},
\]
where \(\overline{\mathcal{F}} = \mathcal{F} / e \).

(ii) If \(e^\perp \in f \) with \(f \in \mathcal{F} \), then
\[
U_{\mathcal{G}; (\mathcal{F}, \overline{\mathcal{F}})}^{c, e} = (1 + t_e^2) U_{\mathcal{G} / e; (\mathcal{F} / e, \overline{\mathcal{F}})}^{c, e} + 2 t_e U_{\mathcal{G} / e; ((\mathcal{F} / e) \setminus \{f / e\}, \overline{\mathcal{F}} \cup \{f / e\})}^{c, e},
\]
where \(\overline{\mathcal{F}} = \mathcal{F} / e \).

(iii) If \(e \in f_1 \) and \(e \in f_2 \), \(f_1 \neq f_2 \), then

(a) if \(f_1 \in \mathcal{F} \), then
\[
U_{\mathcal{G}; (\mathcal{F}, \overline{\mathcal{F}})}^{c, e} = U_{\mathcal{G} / e; (\mathcal{F} / e, \overline{\mathcal{F}})}^{c, e} + t_e \left(U_{\mathcal{G} / e; ((\mathcal{F} / e) \setminus \{f_1 / e\}, \overline{\mathcal{F}} \cup \{f_1 / e\})}^{c, e} + (1 \leftrightarrow 2) \right)
\]
\[+ t_e^2 U_{\mathcal{G} / e; ((\mathcal{F} / e) \setminus \{f_1 / e, f_2 / e\}, \overline{\mathcal{F}} \cup \{f_1 / e, f_2 / e\})}^{c, e},
\]
where \(\overline{\mathcal{F}} = \mathcal{F} / e \).
(b) if \(f_1 \in \mathcal{F} \) and \(f_2 \in \overline{\mathcal{F}} \), then

\[
\mathcal{U}^{c,e}_{\mathcal{G}:(\mathcal{F}, \overline{\mathcal{F}})} = \mathcal{U}^{c,e}_{\mathcal{G}/e:(\mathcal{F}/e, \overline{\mathcal{F}}/e)} + t_e \left(\mathcal{U}^{c,e}_{\mathcal{G}/e:((\mathcal{F}/e) \cup \{f_1/e\}, \overline{\mathcal{F}}/e \cup \{f_1/e\})} + \mathcal{U}^{c,e}_{\mathcal{G}/e:((\mathcal{F}/e) \cup \{f_2/e\}, \overline{\mathcal{F}}/e \cup \{f_2/e\})} \right) + t_e^2 \mathcal{U}^{c,e}_{\mathcal{G}/e:((\mathcal{F}/e) \cup \{f_1/e\} \cup \{f_2/e\}, \overline{\mathcal{F}}/e \cup \{f_1/e\} \cup \{f_2/e\})}.
\]

(130)

Proof. See Appendix B.

Theorem 3 expresses the reduction of the polynomial \(\mathcal{U}_G \) only in terms of edge contractions. It is a new feature of an polynomial invariant on a graph. As a function depending on a partition of the set of internal faces, one must pay attention that in each expression involving \(\mathcal{U}^{(1)}_{\mathcal{G}/e:(\mathcal{F}, \overline{\mathcal{F}})} \) in the rhs of equations (127)-(130), \(\mathcal{F} \) and \(\overline{\mathcal{F}} \) always define a partition of the set \(\mathcal{F}_{\text{int}} \) of internal faces of \(\mathcal{G}/e \). The invariant \(\mathcal{U}^{c,e}_{\mathcal{G}:(\mathcal{F}, \overline{\mathcal{F}})} \) is a multivariate polynomial distinct from the Bollobás-Riordan polynomial.

In rank \(d = 2 \), seeking a state sum formula for \(\mathcal{U}^{\text{od, ev}}_{\mathcal{G}:(\mathcal{F}, \overline{\mathcal{F}})} \), we have using (12),

\[
\mathcal{U}^{\text{od, ev}}_{\mathcal{G}:(\mathcal{F}, \overline{\mathcal{F}})} = \sum_{(\mathcal{G}_1, \mathcal{G}_2) \in \text{Odd}_2(S_1(G^*)) \times \text{Odd}_2(S_2(G^*))} \left[\prod_{l \in \mathcal{H} R(l_1)} t_l \right] \left[\prod_{l \in \mathcal{H} R(l_2)} t_l \right],
\]

(131)

where the definition of \(\text{Even}^b(\cdot) \) can be deduced from \(\text{Odd}^b(\cdot) \) by replacing “odd” by “even,” \(S_1(G^*) \) and \(S_2(G^*) \) are defined through a partition of the vertices of the subgraph \(S(G^*) \).

Let us comment now special edges. Considering first the bridge case, relations (0) and (ii) in the above theorem are valid. For the trivial untwisted loop, (0), (i), and (iii) are true. Finally, for the trivial twisted loop, (0) and (ii) hold. Thus, once again special edges are evaluated from the same theorem. This brings the following important question: “Can we find a closed formula for any polynomial \(\mathcal{U}^{c,e}_{\mathcal{G}:(\mathcal{F}, \overline{\mathcal{F}})} \) on any graph \(\mathcal{G} \) using only the recurrence relation and a finite list of boundary conditions?” In other words, given a graph, its number of internal and external lines, its number of bridges, loops, etc., is there a unique polynomial solution of the above recurrence relations expressed simply as a function of these numbers? If the answer to this question is yes, then the above polynomial will prove to be a very neat and computable invariant simpler than the Bollobás-Riordan polynomial. However, a notion captured by the Bollobás-Riordan polynomial is the genus of the ribbon graph. For the moment, as a naïve example, if we consider a closed graph \(\mathcal{G} \) and add a new set of variables \(\{x_l\} \) associated with the faces, we can define

\[
\widetilde{\mathcal{U}}^{c,e}_{\mathcal{G}:(\mathcal{F}, \overline{\mathcal{F}})}(\{t_l\}; \{x_l\}) = \left[\prod_{l \in \mathcal{F}} x_l^{A_l^c(\{t_l\} \prod t_l)} \right] \left[\prod_{l \in \overline{\mathcal{F}}} x_l^{A_l^e(\{t_l\} \prod t_l)} \right].
\]

(132)

Thus, this polynomial computes to \(\widetilde{\mathcal{U}}^{c,e}_{\mathcal{G}:(\mathcal{F}, \overline{\mathcal{F}})} = (\prod_{l \in \mathcal{F}_{\text{int}}} x_l) \cdot \mathcal{U}^{c,e}_{\mathcal{G}:(\mathcal{F}, \overline{\mathcal{F}})} \) and should obey modified contraction rules from (126)-(130). Under the rescaling \(x_l \to \rho x_l \), we have

\[
\mathcal{U}^{c,e}_{\mathcal{G}:(\mathcal{F}, \overline{\mathcal{F}})}(\{t_l\}; \{\rho x_l\}) = \rho^{\text{int}} \widetilde{\mathcal{U}}^{c,e}_{\mathcal{G}:(\mathcal{F}, \overline{\mathcal{F}})}(\{t_l\}; \{x_l\}).
\]

(133)

Then certainly, \(\widetilde{\mathcal{U}}_G \) knows about the (generalized) genus \(\kappa \) of the closed ribbon graph since \(\mathcal{F}_{\text{int}} = 2 - \kappa - (V - E) \). Maybe to have a better picture and a good starting point for extracting information about the genus of the subgraphs, one can consider expression (131). This problem is left to a subsequent work.

Before addressing the tensor case, let us recall the definition of a trivial loop in rank \(d \). These have been called in Ref. 71 \(p \)-inner self-loops, \(p = 1, 2, 3 \), in the context \(d = 3 \); this definition extends in any \(d \). A trivial loop is an edge in a rank \(d \) colored tensor graph such that after its contraction the number of connected components is always \(d \).
Theorem 4 (Recurrence relation for $\mathcal{U}^{e,e}$ for rank $d > 2$). Let G be a rank d colored tensor graph and e one of its regular edges or trivial loops. Let \mathcal{F}_e be the set of internal faces passing through e and denote $\mathcal{F}_e^c = \mathcal{F}_e \cap F$ and $\mathcal{F}_e^e = \mathcal{F}_e \cap \overline{F}$. We have

$$\mathcal{U}^{e,e}_{\mathcal{G}:(F, \overline{F})} = \sum_{K \times L \subset (\mathcal{F}_e^c/e) \times (\mathcal{F}_e^e/e)} t_e[K + L] \mathcal{U}^{e,e}_{\mathcal{G}:(e/(F/e)(\mathcal{F}_e^c/e) \cup K \cup L, (\mathcal{F}_e^e/e) \cup K \cup L)}$$

(134)

in particular, for $\mathcal{F}_e = \emptyset$

$$\mathcal{U}^{e,e}_{\mathcal{G}:(F, \overline{F})} = \mathcal{U}^{e,e}_{\mathcal{G}:(e/(F/e, \mathcal{F}_e/e))}$$

(135)

Proof. Consider G, a rank $d \geq 3$ colored tensor graph and $F, \overline{F} \subset F_{\text{int}}$ which satisfy the ordinary conditions for defining $\mathcal{U}^{e,e}_{\mathcal{G}:(F, \overline{F})}$.

Let us assume that $\mathcal{F}_e = \emptyset$, namely, there are no internal faces pass through e. The result is obvious. Now, we assume that $\mathcal{F}_e \neq \emptyset$. Using Lemma 3, one writes

$$\mathcal{U}^{e,e}_{\mathcal{G}:(F, \overline{F})} = \prod_{f \in \mathcal{F}_e^c} A_f^e \prod_{f \in \mathcal{F}_e^c} A_f^e \prod_{f \in F/F_e^c} A_f^e \prod_{f \in \overline{F}/F_e^c} A_f^e$$

$$\mathcal{U}^{e,e}_{\mathcal{G}:(F, \overline{F})} = \prod_{f \in \mathcal{F}_e^c} \left(t_e A_f^e + A_f^e \right) \prod_{f \in \mathcal{F}_e^c} \left(t_e A_f^e + A_f^e \right) \prod_{f \in F/F_e^c} A_f^e \prod_{f \in \overline{F}/F_e^c} A_f^e$$

$$\mathcal{U}^{e,e}_{\mathcal{G}:(F, \overline{F})} = \sum_{K \times L \subset \mathcal{F}_e^c/e \times \mathcal{F}_e^e/e} t_e[K + L] \mathcal{U}^{e,e}_{\mathcal{G}:(e/(F/e)(\mathcal{F}_e^c/e) \cup K \cup L, (\mathcal{F}_e^e/e) \cup K \cup L)}$$

(136)

where we used $\mathcal{F}_e^c/e = (\mathcal{F}/e) \setminus (\mathcal{F}_e^c/e)$.

Now, given $K \times L \subset \mathcal{F}_e^c/e \times \mathcal{F}_e^e/e$, one must prove that $\tilde{F} = (\mathcal{F} \setminus \mathcal{F}_e^c) \cup K \cup L$ and $\tilde{\overline{F}} = (\mathcal{F} \setminus \mathcal{F}_e^e) \cup L^c \cup K$ are such that (1) $\mathcal{F} = \mathcal{F} \cap \mathcal{F}_e$ and (2) $\mathcal{F} \cap \mathcal{F}_e = \emptyset$.

With a moment of thoughts one sees that statement (2) is true. Now the former is proved. First, one recognizes that $\mathcal{F}_\text{int}(G/e) = \mathcal{F}_\text{int}(G/e) = \{(F \cap \mathcal{F}_e^c) \cup (\mathcal{F}_e^e/e) \cup (F \leftrightarrow \overline{F})\}$. Furthermore, $\mathcal{F}_e^c/e = F \setminus \mathcal{F}_e^e$, and $\mathcal{F}_e^e/e = K \cup \mathcal{F}_e^c$, and again the same is true for $\mathcal{F}_e^e/e = L \cup L^c, \forall L \subset \mathcal{F}_e^c$. We can conclude to the equality at this point.

Again, we note here that Theorem 4 is consistent with Theorem 3 for rank $d = 2$ models if we exclude the cases where the same face goes through the same edge more than once.

It appears possible to further precise some relations and to introduce rules involving the deletion in the case of ribbon graphs. This question will be addressed now. In particular, the interesting cases correspond to (0), (ii), and (iiiia) of Theorem 3. Note that, in the ribbon graph case and for a given subset of internal faces F, the notation $F - e$ might not always make sense. We define $F - e$ as a set of internal faces in $G - e$ as follows:

(a) $F - e = F$ if the removal of e does not affect the faces in F;

(b) $F - e = F \setminus \{f\}$;

(b1) if $e \in f, f \in F$, and if F loses the internal face f passing through e and f merges with an external face;

(b2) if the face $f \in F$ is such that $e^2 \in f$ and f does not split into two internal faces after the removal of e, then $f - e$ makes sense as a unique internal face;

(b3) if the face $f \in F$ splits into two faces f_1 and f_2 both internal after the removal of e, and in this case $\{f - e\} = \{f_1, f_2\}$;
(c) if \(e \) passes through two different internal lines \(f_1 \) and \(f_2, f_{1,2} \) are in \(\mathcal{F}_{1,2} \) and the removal of \(e \) merges these two lines in one, then \(\mathcal{F}_i - e = \mathcal{F}_i \setminus \{ f_{1,2} \} \).

Cases (a), (b2), (b3), and (c) are the ones under which we can recast some polynomials \(\mathcal{U}_{G/e}^{c,e} \) in terms of the deleted graph \(\bar{G} - e \). The following statement holds.

Proposition 8 (Deletion relations). Let \(\bar{G} \) be a ribbon graph with half-ribbons and \(e \) be one of its edges.

(0) If \(e \) belongs only to a unique external face, and if it does not generate any new internal faces after the deletion of \(e \) in \(\bar{G} \), then

\[
\mathcal{U}_{G/e}^{c,e} = \mathcal{U}_{\bar{G}/e}^{c,e} = \mathcal{U}_{G/e}^{c,e}(\mathcal{F} - e, \mathcal{F} / e) = \mathcal{U}_{\bar{G}/e}^{c,e}(\mathcal{F} - e, \mathcal{F} / e),
\]

with \(\mathcal{F} - e = \bar{F} \) and \(\mathcal{F} / e = \bar{F} / e \).

(i) If \(e^2 \in f \) with \(f \in \mathcal{F} \),

(a) and if the removal of \(e \) will result in one unique internal face \(f - e \) from \(f \), then

\[
\mathcal{U}_{G/e}^{c,e} = (1 + i_e^2) \mathcal{U}_{\bar{G}/e}^{c,e}((\mathcal{F} - e) \cup (f-e), \mathcal{F}) + 2 i_e \mathcal{U}_{\bar{G}/e}^{c,e}((\mathcal{F} - e) \cup (f-e) \cup e),
\]

where \(\mathcal{F} - e = \mathcal{F} \setminus \{ f \} \) and \(\mathcal{F}/e = \mathcal{F} - e = \bar{F} \).

(b) if the removal of \(e \) produces two internal faces \(f_1 \) and \(f_2 \) from \(f \), then

\[
\rho_{e, od}(i_e) := 1 + i_e^2, \quad \rho_{e, od}(i_e) := 2i_e,
\]

where, we denote \(\{ f_1,f_2 \} := \{ f - e \}, \mathcal{F} - e = \mathcal{F} \setminus \{ f \} \) and \(\mathcal{F}/e = \mathcal{F} - e = \bar{F} \).

(ii) If \(e \in f_1 \) and \(e \in f_2, f_1 \neq f_2 \),

(a) and if \(f_{1,2} \in \mathcal{F} \),

\[
\mathcal{U}_{G/e}^{c,e} = \mathcal{U}_{\bar{G}/e}^{c,e}((\mathcal{F} / e) \cup e, \mathcal{F}, \mathcal{F} / e) + t_e \mathcal{U}_{\bar{G}/e}^{c,e}((\mathcal{F} / e) \cup e, \mathcal{F}, \mathcal{F} / e) + \mathcal{U}_{\bar{G}/e}^{c,e}((\mathcal{F} / e) \cup e, \mathcal{F}, \mathcal{F} / e)
\]

where we denote \(f \) the unique resulting internal face in \(\bar{G} - e \) coming from the faces \(f_1 \) and \(f_2 \) and where we note that \(\mathcal{F} - e = \mathcal{F} \setminus \{ f_1,f_2 \} \), and \(\mathcal{F} / e = \mathcal{F} \setminus \{ f_1,f_2 \} \).

(b) if \(f_1 \in \mathcal{F} \) and \(f_2 \in \bar{F} \), then

\[
\mathcal{U}_{G/e}^{c,e} = \mathcal{U}_{\bar{G}/e}^{c,e}((\mathcal{F} / e) \cup e, \mathcal{F}, \mathcal{F} / e) + t_e \mathcal{U}_{\bar{G}/e}^{c,e}((\mathcal{F} / e) \cup e, \mathcal{F}, \mathcal{F} / e)
\]

where we denote \(f \) the unique resulting internal face in \(\bar{G} - e \) coming from the faces \(f_1 \) and \(f_2 \) with \(\mathcal{F} - e = \mathcal{F} \setminus \{ f_1 \} \) and \(\mathcal{F} / e = \mathcal{F} \setminus \{ f_2 \} \).

Proof. The first relation does not cause any trouble. We focus on (iia) and expand the polynomial, for \(e^2 \in f \) with \(f \in \mathcal{F} \), and get

\[
\mathcal{U}_{G/e}^{c,e} = (i_e^2 + 1)A_{f/e}^e + 2A_{f/e}^e(\prod_{i \in \mathcal{F}} A_i^f)(\prod_{i \in \mathcal{F}} A_i^f).
\]

Because all the edges contained in \(f/e \) and \(f - e \) are the same, we can write

\[
A_{f/e}^e = A_{f-e}^f, \quad \forall e.
\]

By definition \(\mathcal{F} - e = \mathcal{F} \setminus \{ f \} \), we can conclude (iia).
One proves (ib) by first observing that

\begin{align}
A_{f/e}^{\text{od}} &= A_{f_1/e}^{\text{od}} A_{f_2/e}^{\text{od}} + A_{f_1/e}^{\text{ev}} A_{f_2/e}^{\text{od}}, \\
A_{f/e}^{\text{ev}} &= A_{f_1/e}^{\text{od}} A_{f_2/e}^{\text{ev}} + A_{f_1/e}^{\text{ev}} A_{f_2/e}^{\text{ev}}, \\
\end{align}

(144)

where \(f_1 \) and \(f_2 \) are generated by the deletion of \(e \). We insert (144) in (142), and using the definition \(\mathcal{F} - e = \mathcal{F} \setminus \{ f \} \) and \(\{ f - e \} = \{ f_1, f_2 \} \), we arrive at the desired relations.

Let us now prove (ii). One starts from the expansion of \(\mathcal{U}_{(\mathcal{F}, \mathcal{F})}^{\sigma, \epsilon} \) focusing on the two amplitudes of faces \(f_i \) sharing \(e \). From Theorem 3, in particular, (129) and (130), know that the two contraction terms present in (140) and (141), respectively, have been shown true. We focus on the additional terms in (129) and (130) and prove that they involve contraction terms. For (iia), the key relation is

\[A_{f_1/e}^{\text{od}} A_{f_2/e}^{\text{ev}} + A_{f_1/e}^{\text{ev}} A_{f_2/e}^{\text{ev}} = A_{f/e}^{\text{od}}, \]

(145)

where \(f \) is the face formed from \(f_1,2 \) after the deletion of \(e \). This leads us to choose the parities of each sector \(\mathcal{F} \) and \(\overline{\mathcal{F}} \). Using this and the definition \(\mathcal{F} \setminus \{ f_1, f_2 \} = \mathcal{F} - e \), we write

\[A_{f/e}^{\text{ev}} \left(\prod_{i \in \mathcal{F} - e} A_i^e \right) \left(\prod_{i \in \overline{\mathcal{F}}} A_i^e \right) = \begin{cases} \mathcal{U}_{(\mathcal{F} - e) \cup \{ f \}, \mathcal{F}}^{\sigma_e, \epsilon} \\
\mathcal{U}_{(\mathcal{F} - e), \overline{\mathcal{F}}}^{\sigma_e, \epsilon} \\
\mathcal{U}_{(\mathcal{F} - e), \mathcal{F} \cup \{ f \}}^{\sigma_e, \epsilon} \\
\end{cases} \]

leading to (140). Now if \(f_1 \in \mathcal{F} \) and \(f_2 \in \overline{\mathcal{F}} \), a counterpart relation of (145) is

\[A_{f_1/e}^{\text{ev}} A_{f_2/e}^{\text{od}} + A_{f_1/e}^{\text{od}} A_{f_2/e}^{\text{ev}} = A_{f/e}^{\text{ev}}, \]

(147)

and one concludes (141) with the definitions \(\mathcal{F} - e = \mathcal{F} \setminus \{ f_1 \} \) and \(\overline{\mathcal{F}} - e = \overline{\mathcal{F}} \setminus \{ f_2 \} \).

Let us comment that in the above statement, in the cases (iia), (ib), and (iia), we assumed that the face \(f \) or faces \(f_i \) passing through \(e \) are in \(\mathcal{F} \). It is simple to infer what happens if they all belong to the other set \(\overline{\mathcal{F}} \). As an illustration of some of the configurations involved in Proposition 8, we provide Figures 28 and 29.

Proposition 8 establishes that some terms appearing in the recurrence relations of \(\mathcal{U}_{(\mathcal{F}, \mathcal{F})}^{\sigma, \epsilon} \) as stated in Theorem 3 may be re-expressed in terms of the polynomials involving a deletion of \(e \). After such reductions in terms of contraction/deletion of an edge, the reader may wonder if the polynomial \(\mathcal{U}_{(\mathcal{F}, \mathcal{F})} \) may be expressed in term of the Tutte polynomial (the sole universal invariant satisfying the contraction/deletion rule on a graph) or Bollobás-Riordan polynomial on ribbon graphs. The answer to that question is definitely no because there exist several cases for which the present rule fails to be a proper contraction/deletion relation with exactly two terms: \(\mathcal{U}_{(\mathcal{F}, \mathcal{F})} \neq \sigma_e \mathcal{U}_{(\mathcal{F} - e), \mathcal{F}} + \tau_e \mathcal{U}_{(\mathcal{F}, \mathcal{F})} \), for all \(e \) regular, with \(\sigma_e \) and \(\tau_e \) functions of \(t_e \). Thus, \(\mathcal{U}_{(\mathcal{F}, \mathcal{F})} \) is certainly not a Tutte polynomial and therefore defines a new kind of invariant on its enlarged space.

FIG. 28. A graph \(\mathcal{G} \) obeying condition (iia) of Proposition 8.

FIG. 29. An example of graph \(\mathcal{G} \) satisfying condition (ib) of Proposition 8.
We give a treatment of some of the special edges (or terminal forms) when evaluating $U^{\epsilon,e}_{G:(F,F)}$. Terminal forms are crucial because they specify the boundary conditions of the recurrence relations. Hence, the following study may help for the evaluation of the polynomial, when after a sequence of reductions (contraction/deletions), the graph reaches some cases listed below.

As commented after Theorem 3 and 4, terminal forms in any rank d also satisfy special relations listed therein. Now the issue addressed in the present section is to show that, under particular circumstances, these relations reduce and, sometimes, yield neat factorizations.

Matrix case. We show that using the disjoint union operation, some recurrence relations when applied to special edges lead to further simplification in terms of subgraphs within the larger graph.

(1) Consider a graph G with a bridge e (Fig. 30). We are interested in the nontrivial configuration when e belongs to a unique internal face $f \in F_{\text{int}}$ which corresponds to Theorem 3 (iii). Furthermore, we take $f \in F$. Call G_1 and G_2 the two disconnected subgraphs resulting from the deletion of e, namely, $G - e = G_1 \cup G_2$. Call F_i the set of internal faces in G_i. Taking a partition $F \cup \overline{F}$ of the set of internal faces of G, four distinct cases can occur: (1) $F_1 \subset F$ and $F_2 \subset \overline{F}$, (2) $F_1 \subset F$, (3) $F_1 \subset \overline{F}$, and (4) $F_1 \subset F$ and $F_2 \subset \overline{F}$. Only case (1) will be discussed here, as the other ones can be derived in a similar manner. We identify for the bridge graph,

$$G - e = G_1 \cup G_2. \quad (148)$$

The result of Proposition 8 (ib) still holds. Then, assuming $F_1 \subset F = F_1 \cup \{f\}$ and $F_2 \subset \overline{F}$, and noting that $\overline{F} - e = F_1$ and $\overline{F} = F_1 \cup F_2$, we start from (139). Apply repeatedly Proposition 7 and get

$$U^{\epsilon,e}_{G:(F,F)} = \rho_{e,e} U^{\epsilon,e}_{G_1:(F_1 \cup (f_1,f_2), F_2)} + U^{\epsilon,e}_{G_2:(F_1 \cup (f_1,f_2), f_2)} + U^{\epsilon,e}_{G_1:(F_1 \cup (f_1,f_2), f_2)} + U^{\epsilon,e}_{G_2:(F_1 \cup (f_1,f_2), f_2)}$$

and it partially factorizes.

(2) We now consider a trivial untwisted loop. This configuration divides into nontrivial cases where e is shared between two internal faces (see Fig. 31) or between one internal and one external faces. The first case subdivides into two subcases determined by the fact that the faces passing through e may or may not belong to the same parity when the polynomial will be evaluated. We focus on the situation described by condition (iiiia) of Proposition 8 while the same technique can be applied for all the remaining cases. A basic relation is

$$G/e = G_1 \cup G_2. \quad (150)$$

Consider a partition of the set of internal faces of G as $F \cup \overline{F}$. In Fig. 31, consider that the internal faces passing through e are such that $f_1 \in F$ and $f_2 \in F$ (and $f_1 \neq f_2$). We contract e in the original graph G and call the resulting graphs as G_1 and G_2. G_1 (respectively G_2) contains the set of internal faces $\mathcal{H}^+_1 = F_1 \cup \{f_1/e\}$ (respectively $\mathcal{H}^+_2 = F_2 \cup \{f_2/e\}$). Let us denote $\mathcal{H}_1 = F \cap \mathcal{H}^+_1$ and $\mathcal{H}_2 = \overline{F} \cap \mathcal{H}^+_2$. We define f the face obtained from $f_{1,2}$ after the deletion of e.

Fig. 30. A bridge e: two blobs F_1 and F_2 which are collections of faces in subgraphs on each side of the bridge. Circles denote the end-vertices of e.

2. Special edges
We now consider a graph with a trivial twisted loop as in Fig. 32. This necessarily leads to

\[\mathcal{G}_t \]

Particular classes of terminal forms have been discussed in Ref. 71. We will use one of these

relations:

\[\mathcal{U}^{e,e}_{G_t} = \mathcal{U}^{e,e}_{G_1 \cup G_2; (H_1 \cup H_2, \mathcal{F} / e \cup f/e}, \mathcal{F} \cup (f_1 / e, f_2 / e)) \]

\[+ t_e (A_{f_1 / e} A_{f_2 / e} + A_{f_1 / e} A_{f_2 / e}) \left(\prod_{f \in \mathcal{F} \setminus 1} A_f \right) \left(\prod_{e \in \mathcal{F} \setminus 2} A_e \right) \]

where we recall that

\[\mathcal{F} / e = (\mathcal{F} \setminus \{f_1, f_2\}) \cup \{f_1 / e, f_2 / e\} = \mathcal{H}_1 \cup \mathcal{H}_2, \quad \mathcal{F} - e = \mathcal{F} \setminus \{f_1, f_2\}, \]

\[\mathcal{F} / e = \mathcal{F} / f \]

We arrive at

\[\mathcal{U}^{e,e}_{G_t} = \mathcal{U}^{e,e}_{G_1; (H_1, \mathcal{H}_1)} \mathcal{U}^{e,e}_{G_2; (H_2, \mathcal{H}_2)} \]

\[+ t_e^2 \mathcal{U}^{e,e}_{G_1; (H_1 \setminus \{f_1 / e\}, \mathcal{H}_1 \cup \{f_1 / e\})} \mathcal{U}^{e,e}_{G_2; (H_2 \setminus \{f_2 / e\}, \mathcal{H}_2 \cup \{f_2 / e\})} \]

\[+ t_e \left(\mathcal{U}^{e,e}_{G_1; (H_1, \mathcal{H}_1)} \mathcal{U}^{e,e}_{G_2; (H_2 \setminus \{f_2 / e\}, \mathcal{H}_2 \cup \{f_2 / e\})} \right) \]

\[+ \mathcal{U}^{e,e}_{G_1; (H_1 \setminus \{f_1 / e\}, \mathcal{H}_1 \cup \{f_1 / e\})} \mathcal{U}^{e,e}_{G_2; (H_2, \mathcal{H}_2)} \]

\[\times \left(\mathcal{U}^{e,e}_{G_1; (H_1, \mathcal{H}_1)} + t_e \mathcal{U}^{e,e}_{G_1; (H_1 \setminus \{f_1 / e\}, \mathcal{H}_1 \cup \{f_1 / e\})} \right) \]

which is a factorized polynomial.

We now consider a graph with a trivial twisted loop as in Fig. 32. This necessarily leads to

unique face passing through the edge \(e\). This case has already been computed in (128) in Theorem 3 and (138) in Proposition 8. No factorization occurs and we have the following relations:

\[\mathcal{U}^{e,e}_{G_t} = 2t_e \mathcal{U}^{e,e}_{G_t; (\mathcal{F} / e \cup (f / e), \mathcal{F} \cup (f / e))} + \left(t_e^2 + 1 \right) \mathcal{U}^{e,e}_{G_t; (\mathcal{F} / e, \mathcal{F})} \]

\[= 2t_e \mathcal{U}^{e,e}_{G_t; (\mathcal{F} / e, \mathcal{F} \cup (f / e))} + \left(1 + t_e^2 \right) \mathcal{U}^{e,e}_{G_t; (\mathcal{F} / e \cup (f / e), \mathcal{F})} \]

Rank 3 colored tensor models. Theorem 4 is also valid in the case of the terminal forms. Particular classes of terminal forms have been discussed in Ref. 71. We will use one of these terminal forms depicted in Fig. 33 (illustrated for rank \(d = 3\), but the idea generalizes easily). This graph is a higher rank generalization of a trivial untwisted loop in the ribbon case. Each blob
appearing in black is a subgraph of G which is not connected (by any strand) to any other blobs. After contracting or deleting e, $G/e = G'/e = G - e = G' - e$.

Let us now restrict to $d = 3$ and call the sets of internal faces contained in each blob f_i. Assume the internal faces f_i passing through the edge e obey $f_i \notin F_i$. Given a partition $F \cup F'$ of the set of internal faces of G, we shall use the assumption that this set decomposes as $F = \{f_1, f_2, f_3\} \cup (\cup_j f_j)$, $F_p = F \cap F_j$, and the complementary set of faces $F_c = \cup_k F_k$, with $F_k = F \cap F_k$.

Since we chose all $f_i \in F$, we have $F/e = \{f_1/e, f_2/e, f_3/e\} \cup (\cup_j F_j)$ and $F'/e = \cup_k F_k$. Using Theorem 4 and after some algebras, we obtain

\[
\begin{align*}
U^{e, e}_{G; (f_1; f_2; f_3) \cup (\cup_j f_j)} &= t_3 e \cdot U^{e, e}_{G_1; (f_1/e) \cup F_1} - \frac{U^{e, e}_{G_2; (f_2/e) \cup F_2}}{g_2} - \frac{U^{e, e}_{G_3; (f_3/e) \cup F_3}}{g_3} \\
+ t_2 \left(U^{e, e}_{G_1; (f_1/e) \cup F_1} - \frac{U^{e, e}_{G_2; (f_2/e) \cup F_2}}{g_2} - \frac{U^{e, e}_{G_3; (f_3/e) \cup F_3}}{g_3} \right) + (1 \rightarrow 2 \rightarrow 3) \\
+ t_3 \left(U^{e, e}_{G_1; (f_1/e) \cup F_1} - \frac{U^{e, e}_{G_2; (f_2/e) \cup F_2}}{g_2} - \frac{U^{e, e}_{G_3; (f_3/e) \cup F_3}}{g_3} \right) + (1 \rightarrow 2 \rightarrow 3) \\
+ U^{e, e}_{G_1; (f_1/e) \cup F_1} - \frac{U^{e, e}_{G_2; (f_2/e) \cup F_2}}{g_2} - \frac{U^{e, e}_{G_3; (f_3/e) \cup F_3}}{g_3},
\end{align*}
\]

(155)

where $(1 \rightarrow 2 \rightarrow 3)$ simply refers to a permutation over the three labels which make the contribution symmetric in 1, 2, and 3.

Other choices of the parities of the f_i's can also be made. The calculation becomes a little bit involved but the idea and techniques used above remain the same.

Assuming again that $f_1 \in F$ and $F_1 = F_2 = F_3 = \emptyset$, further noting that $\{f_1/e\} = \{f_2/e\} = \{f_3/e\} = o$ are all bare vertices, and using our conventions (123), we have from (155)

\[
U^{e, e}_{G; (f_1; f_2; f_3) \cup F} = \begin{cases}
 t_3, & \text{for } e = \text{od}, \\
 1, & \text{for } e = \text{ev}.
\end{cases}
\]

(156)

These are the values of the polynomial $U^{e, e}$ for the simple tensor graph made with one vertex (with two half-edges) and one edge.

FIG. 32. A trivial twisted loop e and f the internal face passing through e. G and G' possess the same polynomial. After contracting or deleting e, $G/e = G'/e = G - e = G' - e$.
D. Illustrations

We provide examples in order to check the recurrence relations using the polynomial of the second kind $U^{\text{od},e}_{G; (F, \overline{F})}$ on some particular nontrivial cases.

1. Matrix case

Consider the ribbon graph G given in Fig. 34. We distribute its closed faces as $F = \{f_1\}$ and $\overline{F} = \{f_2\}$. From direct evaluation, using (119), we obtain

$$U_{G; (F, \overline{F})}^{\text{od},e}(\{f_1\}, \{f_2\}) = (t_1 + t_2)(1 + t_3).$$

(157)

Now, we compute the same polynomial using the recurrence relation. Pick the edge 2 which is shared by the internal faces $f_1 \neq f_2$. We use (iiiib) in Theorem 3, noting also (124), to write

$$U_{G/e; (F/e, \overline{F}/e)}^{\text{od},e}(\{f_1/e\}) = U_{G/e; (F/e \cup \{f_2/e\}, \overline{F}/e \cup \{f_1/e\})}^{\text{od},e} + t_2^2 U_{G/e; (F \setminus \{f_1\}, \overline{F} \cup \{f_1/e\})}^{\text{od},e}.$$

Expanding (157), one gets of course (158).

2. Rank 3 colored tensor models

Consider the rank 3 graph in Fig. 35. We pick the edge e which is shared by two internal faces $f \neq f'$, and $f, f' \in F$. We also choose that the remaining closed face $h \in F$. Therefore, $F = \{f, f', h\}$ and $\overline{F} = \emptyset$ form a partition of internal faces of G. From direct computation, i.e., using (119), we obtain

$$U_{G; (F, \overline{F})}^{\text{od},e} = (t_e + t_1)^2(t_1 + t_2).$$

(159)

Using the recurrence relations given in Theorem 4, one has

FIG. 34. A ribbon graph G with an ribbon edge e which passes through two different internal faces f_1 and f_2. G/e includes f_1/e and f_2/e.

FIG. 35. A rank 3 colored tensor graph G with internal faces f, f' (dotted), and h. In $G/e, f/e$, and f'/e (dotted) pass through the edge 1.
\[U_{\text{od, ev}}^{\text{od, ev}}(G; (f, e), (f', e')) = r^2 U_{\text{od, ev}}^{\text{od, ev}}(G; (f, e \setminus \{f', e'\}), \overline{\mathcal{F}} \cup \{f, e, f', e'\}) + U_{\text{od, ev}}^{\text{od, ev}}(G; (f, e \setminus \{f', e'\}), \overline{\mathcal{F}} \cup \{f, e', f', e\}) \]

\[= r^2 U_{\text{od, ev}}^{\text{od, ev}}(G; (\{h\}, \{f, e, f', e'\}), \overline{\mathcal{F}} \cup \{f, e\}) + U_{\text{od, ev}}^{\text{od, ev}}(G; (\{f, e, f', e'\}), \overline{\mathcal{F}} \cup \{f, e\}) \]

\[+ t_e \left(U_{\text{od, ev}}^{\text{od, ev}}(G; (\{f', e\}, \{f'\}), \overline{\mathcal{F}} \cup \{f, e\}) + U_{\text{od, ev}}^{\text{od, ev}}(G; (\{f, e\}, \{f'\}), \overline{\mathcal{F}} \cup \{f, e\}) \right) \]

Thus, the last equations are consistent with (159).

VI. CONCLUSION

The parametric representation of amplitudes of tensor models over the Abelian group \(U(1)^D \) with a kinetic term linear in momenta has been investigated in this work. We have first introduced a dimensional regularization scheme and have quickly sketched the ensuing renormalization procedure on amplitudes of specific tensor models (the full renormalization procedure is conjectured to be well defined). An important fact revealed by this work is that these well-known procedures can be made compatible with the Feynman amplitudes depending on stranded graph structures. We have also shown that the amplitudes define analytic functions in the complex \(\Re(D) \) small enough. These graph amplitudes \(A_G \) can be extended in meromorphic functions in the whole complex plane. In particular, in the strip \(0 < \Re(D) < \delta + \varepsilon G \), where \(\delta \) is a given dimension of the group in the model considered and \(\varepsilon G \) is a small positive quantity depending on the graph \(G \), for a given amplitude of a model, there can be one or two poles (coupling constant, mass, or wave function divergences). Due to the presence of another independent parameter in this class of models, namely, the theory rank \(d \), it also seems possible to define a new "rank regularization" procedure of the amplitudes by complexifying the parameter \(d \). This deserves to be fully investigated.

In a second part, we have thoroughly investigated and extended the Symanzik polynomials yielded by the parametric representation of generic Abelian models. The ordinary contraction/deletion rules satisfied by Symanzik polynomials are now clearly broken by the stranded graph structure. We have introduced an abstract class of polynomials which depends both on the graph \(G \) but also on a peculiar decomposition of its set \(\mathcal{F}_{\text{int}}(G) \) of faces. Then, we prove that these new polynomials satisfy (only) contraction rules. We have also provided some terminal form recurrence rules and several illustrations. Let us emphasize that the fact that one might incorporate more information in graph polynomials which depend not only on the graph but also on the sets of its constituents opens an avenue of new investigations. To be clearer, the Tutte polynomial \(T_G \) is defined by a state sum over the set \(\mathcal{P}(G) \) of spanning subgraphs of \(G \). Using insights of the present work, the question is whether or not \(T_G \) could have been identified as a function of \(G \) and \(\mathcal{P}(G) \) itself. If the answer to this question is positive, then it will prove that the Tutte polynomial can be read differently. All of its consequences and its ramification in higher dimensions, like the Bolllobás-Riordan polynomial, might find a different representation which might lead to a richer interpretation. This must also be investigated elsewhere.

Finally, the present work has addressed the simplest setting that one could envisage using tensor models. There exists a \(\Phi^4 \) model defined with rank 4 tensors over \(U(1)^4 \) generating 4D simplicial topologies.\(^{14}\) This model is endowed with a kinetic term including a quadratic dependence in momenta: \(\sum_s p_s^2 + \mu \). Finding a complete parametric representation of its amplitudes will be a true challenge. The present work might be helpful for understanding a way to perform a dimensional regularization for this model and for studying the polynomials which will arise from such a representation. This will be addressed in the forthcoming work.
ACKNOWLEDGMENTS

Discussions with Vincent Rivasseau and Thomas Krajewski are gratefully acknowledged. The authors are thankful to Perimeter Institute for Theoretical Physics, Waterloo, Canada, for having initially fostered this collaboration.

APPENDIX A: PROOF OF PROPOSITION 3

In this section, we provide the proof of Proposition 3. Consider \mathcal{G} a ribbon graph with sets $\mathcal{F}_{\text{int}, \mathcal{G}}$ and $\mathcal{F}_{\text{ext}, \mathcal{G}}$ of internal and external faces, respectively, and e an edge of \mathcal{G}.

(i) The polynomial $U^{\text{od/ev}}_{\mathcal{G}}$ (15) only takes into consideration internal faces. If e only belongs to external faces, then a contraction of e will not affect $U^{\text{od/ev}}_{\mathcal{G}}$. This proves (94). The points about the deletion of e and the creation or not of a new internal face are also direct by definition.

(ii) Let us assume now that $e \in f$, $f \in \mathcal{F}_{\text{int}, \mathcal{G}}$, and e belongs to another external face f'. Then, we decompose $U^{\text{od/ev}}_{\mathcal{G}}$ using Lemma 3 as follows:

\[
U^{\text{od/ev}}_{\mathcal{G}} = (t_e A^{\text{ev/od}}_{f/e} + A^{\text{od/ev}}_{f/e}) \prod_{f \in \mathcal{F}_{\text{int}, \mathcal{G}} \setminus \{f\}} A^{\text{od/ev}}_f
\]

where we used the fact that the set of internal faces of \mathcal{G}/e is given by $\{f/e\} \cup \mathcal{F}_{\text{int}, \mathcal{G}} \setminus \{f\}$ and, after removing e in \mathcal{G}, the face f merges to the external face f'. As a result, the set of internal faces of $\mathcal{G} - e$ coincides with $\mathcal{F}_{\text{int}, \mathcal{G}} \setminus \{f\}$. Finally, one observes that either cutting or deleting e has the same effect on the set of internal faces of $\mathcal{G} \cup e$ and $\mathcal{G} - e$ (these both lose f). This achieves the proof of (95).

(iii) Consider that $e \in f$ and $e \in f'$, $f \neq f'$ and both internal. Still by Lemma 3, we expand $U_{\mathcal{G}}$ as

\[
U^{\text{od/ev}}_{\mathcal{G}} = (t_e A^{\text{ev/od}}_{f/e} + A^{\text{od/ev}}_{f/e})(t_e A^{\text{ev/od}}_{f'/e} + A^{\text{od/ev}}_{f'/e}) \prod_{f \in \mathcal{F}_{\text{int}, \mathcal{G}} \setminus \{f, f'\}} A^{\text{od/ev}}_f
\]

\[
= t_e^2 A^{\text{ev/od}}_{f/e} A^{\text{od/ev}}_{f/e} \prod_{f \in \mathcal{F}_{\text{int}, \mathcal{G}} \setminus \{f, f'\}} A^{\text{od/ev}}_f + t_e A^{\text{ev/od}}_{f/e} A^{\text{od/ev}}_{f'/e} + t_e A^{\text{ev/od}}_{f'/e} A^{\text{od/ev}}_{f/e} + t_e U^{\text{od/ev}}_{\mathcal{G}/e} + t_e U^{\text{od/ev}}_{\mathcal{G}/e} + U^{\text{od/ev}}_{\mathcal{G}/e},
\]

where, clearly, by cutting e in \mathcal{G}, one loses f and f' so that $\mathcal{F}_{\text{int}, \mathcal{G}/e} = \mathcal{F}_{\text{int}, \mathcal{G}} \setminus \{f, f'\}$, and where $\mathcal{F}_{\text{int}, \mathcal{G}/e} = \{f/e, f'/e\} \cup \mathcal{F}_{\text{int}, \mathcal{G}} \setminus \{f, f'\}$. The middle term is more subtle. The removal of e merges f and f' into a unique internal face. The complete odd face polynomial for this new face is given by summing over odd subsets in $f/e \cup f'/e$. To get an odd subset, one must take an odd part from one and an even part from the other. In the end, the new face polynomial exactly corresponds to $[A^{\text{od/ev}}_{f/e} A^{\text{ev/od}}_{f'/e} + (f \leftrightarrow f')]$. This achieves (96).

(iv) We have $e^2 \in f$, $f \in \mathcal{F}_{\text{int}, \mathcal{G}}$.

(a) Let us assume that the deletion of e gives rise to two distinct internal faces f_1 and f_2. Lemma 3 helps us to write

\[
U^{\text{od/ev}}_{\mathcal{G}} = (2t_e A^{\text{ev/od}}_{f/e} + (t_e^2 + 1)A^{\text{od/ev}}_{f/e}) \prod_{f \in \mathcal{F}_{\text{int}, \mathcal{G}} \setminus \{e\}} A^{\text{od/ev}}_f
\]

\[
= (1 + t_e^2) U^{\text{od/ev}}_{\mathcal{G}/e} + 2t_e (A^{\text{od/ev}}_{f_1} A^{\text{ev/od}}_{f_2} + A^{\text{ev/od}}_{f_1} A^{\text{od/ev}}_{f_2}) \prod_{f \in \mathcal{F}_{\text{int}, \mathcal{G}} \setminus \{e\}} A^{\text{od/ev}}_f
\]
The fact that we have \(U_{G/e}^{\od/e} \) goes by the same argument as before. We have split \(A_{f/e}^{\od/e} \) into two types of contributions which come from the face polynomials associated with \(f_1 \) and \(f_2 \). The set of internal faces of \(G - e \) are readily obtained from \(F_{\text{int}} \setminus \{ f \} \cup \{ f_1, f_2 \} \) whereas \(F_{\text{int}} \setminus \{ f \} \) coincides again with the set of faces of \(G \setminus e \). We get (97).

(b) Finally, we consider that the removal of \(e \) generates one internal face \(f_{12} \). The first line of (A3) remains the same. We identify \(f/e \) with \(f_{12} \), and the rest follows

\[
U_{G/e}^{\od/e} = (1 + t_e^2) U_{G/e}^{\od/e} + 2t_e A_{f_{12}}^{\od/e} U_{G/e}^{\od/e} .
\]

\[(A4) \]

APPENDIX B: PROOF OF THEOREM 3

In this section, we give the proof of Theorem 3. Let \(G \) be a ribbon graph with half-ribbons, \(F_{\text{int}} \) being its set of internal faces. Let \(F \) and \(F' \) be subsets of \(F_{\text{int}} \) as stated in the theorem. In the following, the face polynomial expansions are always performed using Lemma 3.

(0) External faces under contraction remain external and do not affect \(U^{e, e} \). This is also why \(F/e = F' \) and \(F'/e = F' \).

(\(i \)) Consider \(e \) which belongs to an external face and an internal face denoted by \(f \in F \subset F_{\text{int}} \). We have

\[
U_{G/e}^{\epsilon,e} = \left(t_e A_{f/e}^{\epsilon} + A_{f/e}^{\epsilon} \right) \left(\prod_{f \in F} A_e^{f} \right) \left(\prod_{t \in T} A_t^{f} \right) = t_e \left(\prod_{f \in F} A_e^{f} \right) \left(\prod_{t \in T} A_t^{f} \right) \]

\[
= t_e A_{f/e}^{\epsilon} U_{G/e}^{\epsilon, e} + U_{G/e}^{\epsilon, e} + U_{G/e}^{\epsilon, e} = t_e A_{f/e}^{\epsilon} U_{G/e}^{\epsilon, e} + U_{G/e}^{\epsilon, e} \]

\[(B1) \]

One notices that \((F \setminus \{ f \}) \cup \{ f/e \} \) coincides with \(F/e \) which is the subset of faces corresponding to \(F' \) in the graph \(G/e \). We have also \(F' \setminus \{ f \} = (F/e) \setminus \{ f/e \} \) and \(F'/e = F' \) as \(e \) does not belong to any faces in \(F' \). We get (127).

(\(ii \)) If \(e^2 \in f, f \in F \),

\[
U_{G/e}^{\epsilon, e} = A_{f/e}^{\epsilon} \left(\prod_{f \in F} A_e^{f} \right) \left(\prod_{t \in T} A_t^{f} \right) = \left(t_e A_{f/e}^{\epsilon} + 2t_e A_{f/e}^{\epsilon} \right) \left(\prod_{t \in T} A_t^{f} \right) \]

\[
= \left(t_e A_{f/e}^{\epsilon} \right) \left(\prod_{f \in F} A_e^{f} \right) \left(\prod_{t \in T} A_t^{f} \right) + 2t_e U_{G/e}^{\epsilon, e} \]

\[(B2) \]

Finally, to get (128), we apply the same identities as in (\(i \)).

(\(iii \) \(a \)) If \(e \in f_1, f_1 \neq f_2 \), with \(f_1 \in F \), then

\[
U_{G/e}^{\epsilon, e} = \left(A_{f_1/e}^{\epsilon} A_{f_2/e}^{\epsilon} \right) \left(\prod_{f \in F} A_e^{f} \right) \left(\prod_{t \in T} A_t^{f} \right) = \left(t_e A_{f_1/e}^{\epsilon} A_{f_2/e}^{\epsilon} \right) \left(\prod_{f \in F} A_e^{f} \right) \left(\prod_{t \in T} A_t^{f} \right) = t_e \left(A_{f_1/e}^{\epsilon} A_{f_2/e}^{\epsilon} \right) \left(\prod_{f \in F} A_e^{f} \right) \left(\prod_{t \in T} A_t^{f} \right) + 2t_e U_{G/e}^{\epsilon, e} \]

\[
= t_e U_{G/e}^{\epsilon, e} \left(\prod_{f \in F} A_e^{f} \right) \left(\prod_{t \in T} A_t^{f} \right) + 2t_e U_{G/e}^{\epsilon, e} \]

\[(B3) \]

where \((F \setminus \{ f_1, f_2 \}) \cup \{ f_1/e, f_2/e \} = F/e \), \((F \setminus \{ f_1, f_2 \}) \cup \{ f_1/e \} = (F/e) \setminus \{ f_2/e \}, \) and \(F'/e = F' \). One gets (129).
(iii) If \(e \in f_i, f_j \in \mathcal{F} \), and \(f_2 \in \overline{\mathcal{F}} \)

\[
\mathcal{U}^{e,\bar{e}}_{\overline{\mathcal{F}}; (\mathcal{F}, \overline{\mathcal{F}})} = A_{f_1}^{e} A_{f_2}^{\bar{e}} \left(\prod_{i \in F_{f_1}} A_i^e \right) \left(\prod_{i \in F_{f_2}} A_i^{\bar{e}} \right)
\]

\[
= \left(t_e^2 A_{f_2/e}^{e} A_{f_1/e}^{\bar{e}} + t_e A_{f_1/e}^{e} A_{f_2/e}^{\bar{e}} + t_e A_{f_1/e}^{\bar{e}} A_{f_2/e}^{e} + A_{f_1/e}^{e} A_{f_2/e}^{\bar{e}} \right) \left(\prod_{i \in F_{f_1}} A_i^e \right) \left(\prod_{i \in F_{f_2}} A_i^{\bar{e}} \right)
\]

\[
= t_e^2 \mathcal{U}^{e,\bar{e}}_{\overline{\mathcal{F}}; (\mathcal{F}\setminus\{f_1\}) \cup \{f_2/e\}, \overline{\mathcal{F}} \cup \{f_1/e\})
\]

\[
+ t_e \left(\mathcal{U}^{e,\bar{e}}_{\overline{\mathcal{F}}; (\mathcal{F}\setminus\{f_1\}) \cup \{f_2/e,f_2\}, \overline{\mathcal{F}} \cup \{f_1/e\}) \right) + \mathcal{U}^{e,\bar{e}}_{\overline{\mathcal{F}}; (\mathcal{F}\setminus\{f_1/f_2\}) \cup \{f_2/e\}, \overline{\mathcal{F}} \cup \{f_1/e\}) \right). \tag{B4}
\]

We conclude to (130) after identifying \((\mathcal{F}\setminus\{f_1\}) \cup \{f_2/e\} = \mathcal{F}/e\) and \((\overline{\mathcal{F}} \setminus \{f_2\}) \cup \{f_2/e\} = \overline{\mathcal{F}}/e\), \((\mathcal{F}\setminus\{f_1\}) \cup \{f_1/e,f_2/e\} = (\mathcal{F}/e) \cup \{f_2/e\}\) and \(\overline{\mathcal{F}} \setminus \{f_2\} = (\overline{\mathcal{F}}/e) \setminus \{f_2/e\}\), and \((\mathcal{F}\setminus\{f_1\}) \cup \{f_2/e\} = ((\mathcal{F}/e) \setminus \{f_1/e\}) \cup \{f_2/e\}\) and \((\overline{\mathcal{F}} \setminus \{f_2\}) \cup \{f_1/e\} = ((\overline{\mathcal{F}}/e) \cup \{f_1/e\}) \setminus \{f_2/e\}\). The rest of the equalities are obtained in a similar way.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 194.94.224.254 On: Wed, 06 Jan 2016 08:15:17
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 194.94.224.254 On: Wed, 06 Jan 2016 08:15:17