GAUSSF - A Vector Function Version of a Gaussian
Random Number Generator for the CRAY-1(R)

Alan Michael McKenney

IPP 6/214 August 1982

Abstract:

GAUSSF is a FORTRAN-callable vector function for the CRAY-1(R) which generates random numbers with a normal (Gaussian) distribution. Its presence in an innermost Do-loop does not inhibit vectorization; moreover, when called from within a vectorized loop, it is over 7 times as fast as the equivalent FORTRAN version, otherwise it is over 4 times as fast.

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem Max-Planck-Institut für Plasmaphysik und der Europäischen Atomgemeinschaft über die Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgeführt.
Introduction:

In the course of modifying a Monte-Carlo program to run faster on the CRAY-1, it was necessary to rewrite the Gaussian random number generator as a CRAY-1 vector function in CAL (CRAY Assembler Language). I believe that others will find it useful as well.

Method:

Two random numbers ξ_1, ξ_2 with a Gaussian distribution are generated from two random numbers ξ_1, ξ_2 with a uniform distribution between 0 and 1 according to the formulae:

$$\xi_1 = \cos(2\pi \xi_1) \sqrt{-2 \log \xi_2}$$

$$\xi_2 = \sin(2\pi \xi_1) \sqrt{-2 \log \xi_2}$$

Implementation:

Typical FORTRAN Implementation (not vectorized):

When this method of generating Gaussian random numbers is implemented in FORTRAN, the first call causes the computer's random number generator (RANF on the CRAY) to be called to generate two uniformly distributed random numbers, which are used to compute two Gaussian random numbers as previously described, the one is returned and the other saved. The second call causes the saved Gaussian

* Ermakov, S.M. Die Monte-Carlo Methode und verwandte Fragen, R. Oldenbourg Verlag, München, 1975, p. 58
random number to be returned and a flag set that the number has
been used. The third call causes a new pair to be computed and one
number to be saved as by the first call, and so on. This does not
take advantage of the CRAY-1 vector hardware.

GAUSSF Implementation:

GAUSSF maintains a 256-word table of Gaussian random numbers
from which random numbers are taken as necessary. The first time
GAUSSF is called and every time less than 128 unused numbers remain,
the vector version of RANF is called to generate 64 pairs of uni-
formly distributed random numbers, and the vector hardware and vector
versions of SQRT, ALOG, SIN and COS are used to compute 64 pairs of
Gaussians using the previously described method, which are then stored
in the table; this takes maximum advantage of the vector hardware.
Each scalar call to GAUSSF causes the next unused Gaussian random num-
ber to be fetched from the table, and, if necessary, another 64 pairs
of numbers to be computed. Each vector call causes the next 1 - 64 ran-
dom numbers to be fetched, and, if necessary, more numbers computed.*

Use:

GAUSSF is written in CAL (CRAY Assembly Language), hence it cannot
be compiled with the FORTRAN program which calls it, but must be assembled
separately.

GAUSSF is called as a normal single-precision FORTRAN function with
one or no arguments. Example:

VALUE = GAUSSF()* FACTOR

or (equivalently):

VALUE = GAUSSF(DUMMY)* FACTOR

*
Cf. the method used in RANF, Library Reference Manual (SR-0014),
If loops containing GAUSSF calls need not be vectorized, this is sufficient, however, calls to GAUSSF will inhibit vectorization of any loops in which they appear. To avoid this, the CFT compiler directive "VFUNCTION"* may be used:

CDIR$ VFUNCTION GAUSSF

 .

 DO 100 J = 1,N
 VALUE(J) = GAUSSF()

100 CONTINUE

Example of a job deck:

JOB (parameters)
CAL.
CFT.
LDR.
/EOF
 .
 . GAUSSF source.
 .
 /
EOF
 .
 . program
 .
SUBROUTINE CALLGAUS
CDIR$ VFUNCTION GAUSSF
 DIMENSION VAL1(1000), VAL2(1000)
 .
 . program
 .
 DO 100 J = 1,100
 VAL1(J) = GAUSSF()

VAL2(J) = GAUSSF()

100 CONTINUE

.
.
more program
.

/EOF
.
.
.

input data

/EOF

In this job, GAUSSF is assembled, the user's program compiled and run with GAUSSF. In the subroutine "CALLGAUS", GAUSSF has been declared as a vector function, hence the "DO 100" loop will be vectorized. This means that, instead of executing all the operations in the loop once for J = 1, then for J = 2, and so on, in this case, calling GAUSSF for VAL 1(1), then once for VAL 2(1), then once for VAL 1(2), etc., each operation will be executed simultaneously for between one and 64 values of J; in this case. GAUSSF will be called once for VAL 1(1) through VAL 1(64), then once for VAL 2(1) through VAL 2(64), then (repeating the loop) VAL 1(65) through VAL 1(128), etc.

Warning: If GAUSSF is declared as a vector function and called with an argument, CFT assumes that its value is a function of its argument only. Thus, under some circumstances, if it is called from within a loop with an invariant or scalar argument, the call is removed from the loop. The user should therefore always call GAUSSF with no arguments or with a vector (not invariant) dummy argument.
Limitations:

Because of the effective reordering of calculations within a vector loop, loops containing multiple calls to GAUSSF or RANF or calls to both will yield different values, depending on whether the loop is vectorized or not. In the previous example, if the loop is not vectorized, VAL 1(1) will contain the first Gaussian random number and VAL 2(1) the second. If it is vectorized, VAL 1(1) will contain the first and VAL 2(1) the 65th.

Timing:

The times required for 1,000,000 calls were:

<table>
<thead>
<tr>
<th></th>
<th>1,000,000 calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAUSSF vector loop</td>
<td>0.879 sec.</td>
</tr>
<tr>
<td>GAUSSF Scalar loop</td>
<td>1.523 sec.</td>
</tr>
<tr>
<td>FORTRAN equivalent (Box-Muller method)</td>
<td>6.249 sec.</td>
</tr>
</tbody>
</table>

Tests:

The distribution of the generated numbers \(f_c(t) \) was computed by dividing the range \([-5,5]\) into 1,000 "bins" of width \(\Delta t = \frac{1}{100} \), generating \(N_{\text{total}} \) random numbers, and for each bin \(j \) with \(t_j \), computing \(N_j \), the number of random numbers falling within the range \([t_j - \frac{\Delta t}{2}, t_j + \frac{\Delta t}{2})\).

\[
f_c(t_j) = \frac{N_j}{\Delta t \cdot N_{\text{total}}} \approx f_A(t_j) = \frac{e^{-\frac{t_j^2}{2}}}{\sqrt{2\pi}}
\]

The error, \(f_c(t_j) - f_A(t_j) \) was compared with the standard deviation \(\sigma \):

\[
\sigma(t_j) = \sqrt{\frac{f_A(t_j)}{N_{\text{total}}} \left(\frac{1}{\Delta t} - f_A(t_j) \right)}
\]
Actual distribution of 1,000,000 random numbers generated by GAUSSF compared with $\frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}}$.

Difference between ideal and actual distribution divided by σ, for 1,000,000 random numbers.
Actual distribution of 100,000,000 random numbers generated by GAUSSF compared with $\frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}}$.

Difference between actual and ideal distribution divided by σ, for 100,000,000 random numbers.