Druckerhöhung und Wärmeleitfähigkeit in einem unendlich langen, zylindersymmetrischen Wasserstoffplasma in einem axialen Magnetfeld

Pressure Increase and Thermal Conductivity in an Infinitely Long Cylindrical Hydrogen Plasma in an Axial Magnetic Field

J. Raeder, S. Wirtz

IPP 3/65 Dezember 1967
Druckerhöhung und Wärmeleitfähigkeit in einem unendlich langen, zylindersymmetrischen Wasserstoffplasma in einem axialen Magnetfeld

Pressure Increase and Thermal Conductivity in an Infinitely Long Cylindrical Hydrogen Plasma in an Axial Magnetic Field

J. Raeder, S. Wirtz

IPP 3/65 Dezember 1967

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem Institut für Plasmaphysik GmbH und der Europäischen Atomgemeinschaft über die Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgeführt.

December 1967 (in German)

Abstract

The pressure increase and total thermal conductivity are calculated for an infinitely long hydrogen plasma column in an axial magnetic field. The calculations, which are based on the first and third moments of the Boltzmann equations for atoms, ions and electrons, are carried out under the assumption of local thermal equilibrium. Numerical results are given for magnetic fields up to 150 kG, temperatures to 10^6 °K and external pressures ranging from 10^3 to 10^5 dyne/cm2. Comparing these results with previous calculations, which neglect thermal forces, shows that they cause an increase of pressure also in the completely ionized plasma and therefore modify the thermal conductivity indirectly.
1. Einleitung

Überlagert man einer zylindersymmetrischen Bogenentladung ein homogenes, axiales Magnetfeld, so verursacht dieser einen Anstieg des Gesamtdruckes vom Bogenrand zu den heißen Zonen im Inneren hin. Die Ursache dafür sind radial nach innen gerichtete Kräfte, die aus der Wechselwirkung des Magnetfeldes mit azimuthalen Strömen resultieren. Diese kann man im Bereich teilweiser Ionisation im wesentlichen auf die gemeinsam nach aussen diffundierenden Ionen und Elektronen (ambipolare Diffusion) zurückführen, die durch das Magnetfeld in zueinander entgegengesetzten Richtungen azimuthal abgelenkt werden. Die Ergebnisse der von Wienbeck (1) durchgeführten Rechnungen für diesen Fall werden durch Messungen von Döbele (2) an einem Wasserdampfbogen im Bereich teilweiser Ionisation bestätigt. Bei vollständiger Ionisation ergibt diese Theorie keinen konstanten Druck, da dann der ambipolare Diffusionstrom verschwindet. Dagegen liefern Messungen von Grassmann, Klüber und Wulf (3) an einem Heliumplasma und von Mann, Ringler und Zankl (4) an einem Wasserdampfplasma auch im Bereich vollständiger Ionisation eine weitere Zunahme des Druckes mit der Temperatur. Der Grund dafür sind wiederum azimuthale Ströme, die im vollionisierten Plasma allerdings durch den Einfluß des Magnetfeldes auf die Thermodiffusion, dem Kernseffekt, (proportional zu \(\nabla T \times B \)) und auf die Reibung zwischen Ionen und Elektronen verursacht werden.

Ziel dieses Berichtes ist die Berechnung des Druckaufbaues und des radialen Wärmestromes in einem unendlich langen, zylindersymmetrischen Wasserdampfplasma unter Berücksichtigung der Thermodiffusions- und der Momentengleichungen der Plasmasubstanz im Temperaturbereich von \(6 \cdot 10^{2} \text{ bis } 10^{6} \text{ K} \).

2. Grundgleichungen und Annahmen

Als Ausgangspunkt dienen die von Feneberg (5) angegebenen Gleichungen für das erste und dritte Moment der Boltzmann-Gleichungen eines Dreiteilchensystems aus Neutralteilchen, Ionen und Elektronen.

1. Moment

\[
\nabla \rho = - \frac{m_{e}}{kT} \nu_{e} (\vec{v}_{e} - \vec{v}) + m_{e} \nu_{e} (\vec{v}_{e} - \vec{v}) + \frac{m_{e}}{kT} \nu_{e} S_{e} - \frac{m_{e}}{kT} \nu_{e} S_{e} + \frac{m_{e}}{kT} \nu_{e} S_{e} / (1a) \]

\[
\nabla \rho - \frac{n_{e}}{e} \left(\vec{E} + \frac{\vec{v}_{e} \times \vec{B}}{c} \right) = - \frac{m_{e} \nu_{e}}{kT} (\vec{v}_{e} - \vec{v}) + m_{e} \nu_{e} (\vec{v}_{e} - \vec{v}) - \frac{3m_{e}}{kT} \nu_{e} S_{e} - \frac{m_{e}}{kT} \nu_{e} S_{e} + \frac{m_{e}}{kT} \nu_{e} S_{e} / (1b) \]

\[
\nabla \rho + \frac{n_{e}}{e} \left(\vec{E} + \frac{\vec{v}_{e} \times \vec{B}}{c} \right) = - \frac{m_{e} \nu_{e}}{kT} (\vec{v}_{e} - \vec{v}) - m_{e} \nu_{e} (\vec{v}_{e} - \vec{v}) + \frac{3m_{e}}{kT} \nu_{e} S_{e} - \frac{m_{e}}{kT} \nu_{e} S_{e} / (1c) \]

3. Moment

\[
\frac{5}{2} \frac{R_{e}}{m_{e}^{2}} \nabla \left(kT \right) = - \frac{5}{2} \frac{R_{e}}{m_{e}^{2}} \nu_{e} (\vec{v}_{e} - \vec{v}) + \frac{S_{e}}{kT} \left(0,365 \nu_{e} - S_{e} \left(0,8 \nu_{e} + 0,365 \nu_{e} \right) \right) / (2a) \]

\[
\frac{5}{2} \frac{R_{e}}{m_{e}^{2}} \nabla \left(kT \right) - \frac{S_{e}}{kT} \omega = - \frac{5}{2} \frac{R_{e}}{m_{e}^{2}} \nu_{e} (\vec{v}_{e} - \vec{v}) - \frac{S_{e}}{kT} \left(0,8 \nu_{e} + 0,365 \nu_{e} \right) + \frac{S_{e}}{kT} \left(0,365 \nu_{e} \right) / (2b) \]

\[
\frac{5}{2} \frac{R_{e}}{m_{e}^{2}} \nabla \left(kT \right) + \frac{S_{e}}{kT} \omega = - \frac{5}{2} \frac{R_{e}}{m_{e}^{2}} \nu_{e} (\vec{v}_{e} - \vec{v}) + \frac{S_{e}}{kT} \left(0,365 \nu_{e} - S_{e} \left(0,365 \nu_{e} \right) - S_{e} \left(1,3 \nu_{e} \right) \right) / (2c) \]

\(S_{0}, S_{1} \) und \(S_{e} \) sind die Wärmestromer der einzelnen Sorten, \(\omega = \frac{9}{m_{e}^{2}} = m_{e}^{2} \omega \) und \(\omega = \frac{9}{m_{e}^{2}} = m_{e}^{2} \omega = \omega \).

Diese Gleichungen wurden unter folgenden Voraussetzungen abgeleitet, bzw. enthalten folgende Näherungen:

a) Alle Vorgänge sind stationär.

b) Die Abweichungen von thermodynamischen Gleichgewichten sind so klein, daß die Transportgleichungen in guter Näherung linear sind.

c) Sie gelten nur für nicht zu kleine \(\omega T_{0} (\omega T_{0} > 1) \), d.h. stellen nur senkrecht zu einem nicht zu schwachen Magnetfeld eine gute Näherung dar.

d) Der Druck wird isotrop angenommen.

e) Unelastische Stöße werden in den Momentengleichungen nicht berücksichtigt.

f) Für die Stöße zwischen Wasserdampfatomen und -ionen wurde der Stoßquerschnitt, der nur zu

g) Der Einfluß des Magnetfeldes auf die Stöße prozesse wird vernachlässigt, d.h. der Larmorradius muß wesentlich größer als die Debye-Länge sein.

Die Summe der Gleichungen (1a), (1b) und (1c) ergibt die Bewegungsgleichung des gesamten Plasmas:

$$\nabla \mathbf{v} - \mathbf{v} \times \mathbf{B} = 0$$

mit

$$\mathbf{F} = \mathbf{F}_e + \mathbf{F}_i + \mathbf{F} = \mathbf{F}_e + \mathbf{F}_i$$

3. Berechnung des Druckverlaufes p(T)

3.1. Elimination der Wärmestrome \mathbf{S}_o, \mathbf{S}_1 und \mathbf{S}_e aus den Momentengleichungen

Um den Druckverlauf $p(T)$ berechnen zu können, werden die Wärmestrome \mathbf{S}_o, \mathbf{S}_1 und \mathbf{S}_e aus den Gleichungen für die dritten Momente (2a), (2b) und (2c) ausgerechnet und in die Impulsbilanzen (1a), (1b), (1c) eingesetzt. Die Gl.(2c) hat die Form:

$$\mathbf{S}_e = \frac{2}{3} \mathbf{F}_e \left(kT + \frac{\nu_0}{2} \mathbf{v}_e \mathbf{v}_e - \frac{3}{2} \mathbf{v}_e \mathbf{v}_e \mathbf{v}_e - \frac{1}{3} \mathbf{v}_e \mathbf{v}_e \right)$$

mit

$$\frac{1}{\mathbf{F}_e} = 4.3 \frac{\nu_0}{v_e} + 1.36 \frac{\nu_0}{v_e}$$

Zerlegt man die Vektoren \mathbf{S}_e und \mathbf{F}_e in ihre Anteile \mathbf{S}_{ew}, \mathbf{S}_{ei} bzw. \mathbf{F}_{ew}, \mathbf{F}_{ei} parallel und senkrecht zum Magnetfeld \mathbf{B}, so erhält man nach kurzer Rechnung:

$$\mathbf{S}_{ew} = -\mathbf{F}_{ew}$$

$$\mathbf{S}_{ei} = -\frac{c_0^2}{4} \frac{\mathbf{F}_{ei}}{\mathbf{v}_e} + \frac{c_0^2}{4+c_0^2} \mathbf{v}_e \mathbf{v}_e$$

\mathbf{S}_o aus Gl.(2a) ausgerechnet und in Gl.(2b) eingesetzt ergibt:

$$\mathbf{S}_o = \mathbf{S}_{ew} = -\mathbf{F}_{ew}$$

mit

$$\mathbf{C} = \frac{\nu_0}{2} \mathbf{v}_e \left(1 + \frac{1}{c_0^2} \right) \left(\left(kT + \frac{\nu_0}{2} \mathbf{v}_e \mathbf{v}_e - \frac{3}{2} \mathbf{v}_e \mathbf{v}_e \mathbf{v}_e - \frac{1}{3} \mathbf{v}_e \mathbf{v}_e \right) \right)$$

und

$$\mathbf{S}_o = c_0 \left(\mathbf{F}_{ew} + \frac{1}{c_0^2} \mathbf{v}_e \mathbf{v}_e \right)$$

Damit erhält man:

$$\mathbf{S}_{ew} = -c_0 \mathbf{F}_{ew}$$

$$\mathbf{S}_{ei} = -c_0 \mathbf{F}_{ei} \frac{c_0^2}{4+c_0^2} \mathbf{v}_e \mathbf{v}_e$$

Setzt man die Wärmestrome \mathbf{S}_o, \mathbf{S}_1 und \mathbf{S}_e in die Impulsbilanz (1c) der Elektronen ein und verwendet die Zustandsgleichung $p_a = n_a kT (a = 0, 1, e)$, so ergibt sich:
\[\nabla \rho_e + n_e (E + \mathbf{v}_e \times \mathbf{B}) = - \varrho \nu_0 \left[\alpha_e (\mathbf{v}_e - \mathbf{v}_e) + \alpha_e (\mathbf{v}_e - \mathbf{v}_e) \right] + \alpha_e (\mathbf{v}_e - \mathbf{v}_e) \times h \]

mit den Abkürzungen:

\[\alpha_e = 1 - 0.4 \mathbf{K} \omega_c \]
\[\alpha_e' = 0.3 \mathbf{K} \omega_c \]
\[\alpha_e'' = 0.3 \mathbf{K} \omega_c \]
\[\alpha_e''' = 0.3 \mathbf{K} \omega_c \]
\[\mathbf{K} = \frac{\mathbf{K}}{1 + (\omega_c)^2} \]

Führt man ein Zylinderkoordinatensystem \((r, \phi, z)\) ein, dessen \(z\)-Richtung mit der Richtung des Magnetfeldes \((\mathbf{B}, n)\) zusammenfällt, so kann man Gl. (6) übersichtlicher schreiben:

\[\nabla \rho_e + n_e (E + \mathbf{v}_e \times \mathbf{B}) = - \varrho \nu_0 \left(\mathbf{v}_e - \mathbf{v}_e \right) - \varrho \nu_0 \mathbf{a} \left(\mathbf{v}_e - \mathbf{v}_e \right) + \varrho \nu_0 \mathbf{a}'' \mathbf{v}_T + \varrho \nu_0 \mathbf{a}''' \mathbf{v}_T \]

wobei \(\mathbf{a}, \mathbf{a}', \mathbf{a}'', \mathbf{a}''', \mathbf{a}''''\) Tensoren sind.

Beispielsweise lautet die Matrix von \(\mathbf{a}\):

\[
\begin{pmatrix}
\alpha_e & \alpha_e' & \alpha_e'' & \alpha_e'''
\end{pmatrix}
\]

Im Plasma mit Magnetfeld gehen die Reibungskräfte zwischen den verschiedenen Teilchenströmen und die Thermokräfte also aus den entsprechenden Relativgeschwindigkeiten bzw. dem Temperaturgradienten durch Multiplikation mit einem Tensor hervor. Deshalb sind sie nicht mehr parallel (oder antiparallel) sondern stehen schief zu den entsprechenden Relativgeschwindigkeiten bzw. dem Temperaturgradienten. Mit verschwindendem Magnetfeld verschwinden in den Matrizen die Glieder ausserhalb der Diagonale, während alle Diagonaleglieder den gleichen Wert annehmen, d.h. der Tensor reduziert sich auf einen skalaren Faktor.

Für die Ionen und Neutralteilchen ergeben sich Gleichungen analog zu (6) bzw. (6a), die hier aber nicht wiedergegeben werden, da es für die weitere Rechnung günstiger ist, die Relativgeschwindigkeiten \(\mathbf{v}_e - \mathbf{v}_e\), \(\mathbf{v}_e - \mathbf{v}_e\) und \(\mathbf{v}_e - \mathbf{v}_e\) durch die Schwerpunktsgeschwindigkeit \(\mathbf{v}\) des Plasmas, durch die Schwerpunktsgeschwindigkeit \(\mathbf{v}_L\) der Ladungsträger und die Stromdichte auszudrücken.
\[\nabla \cdot \mathbf{V} = n_e m_e \mathbf{V} + n_i m_i \mathbf{V} \]
\[\mathbf{j} = n_e (\mathbf{V}_e - \mathbf{V}_i) \]

Folgen die Gleichungen:

\[\mathbf{V}_e - \mathbf{V}_i = \frac{n_e - n_i}{n_e} \mathbf{V}_i + \frac{m_i}{m_e} \mathbf{V}_i \]
(7a)

\[\mathbf{V}_e - \mathbf{V}_i = \frac{n_e - n_i}{ne} \mathbf{V}_i + \frac{m_i}{m_e} \mathbf{V}_i \]
(7b)

\[\mathbf{V}_e - \mathbf{V}_i = \frac{\mathbf{j}}{ne} \]
(7c)

Berücksichtigt man noch \(\frac{m_i}{m_e} \ll 1 \), so erhält man die Impulsbilanzen der Ionen und Elektronen in der Form

\[\nabla \cdot \mathbf{P}_e - ne \mathbf{E} \times \mathbf{v}_e = d_2 (\mathbf{V}_e - \mathbf{V}_i) \mathbf{E} + \frac{g_2}{\mathbf{V}_i} (\mathbf{V}_e - \mathbf{V}_i) + \frac{g_3}{\mathbf{V}_i} (\mathbf{V}_e - \mathbf{V}_i) \mathbf{E} + \frac{g_4}{\mathbf{V}_i} (\mathbf{V}_e - \mathbf{V}_i) \mathbf{E} + \frac{\mathbf{j}}{\mathbf{V}_i} \]

(8)

\[\nabla \cdot \mathbf{P}_e + ne \mathbf{E} \times \mathbf{v}_e = d_2 (\mathbf{V}_e - \mathbf{V}_i) \mathbf{E} + \frac{g_2}{\mathbf{V}_i} (\mathbf{V}_e - \mathbf{V}_i) + \frac{g_3}{\mathbf{V}_i} (\mathbf{V}_e - \mathbf{V}_i) \mathbf{E} + \frac{g_4}{\mathbf{V}_i} (\mathbf{V}_e - \mathbf{V}_i) \mathbf{E} + \frac{\mathbf{j}}{\mathbf{V}_i} \]

(9)

Die Koeffizienten \(d_i, e_i, g_i, a_i, k_i, l_i \) sind am Ende des Berichtes zusammengenäßt.

Addition der Gleichungen (8) und (9) ergibt schließlich:

\[\nabla \cdot \mathbf{P}_e - \mathbf{j} \times \mathbf{E} = a_0 (\mathbf{V}_e - \mathbf{V}_i) + a_1 (\mathbf{V}_e - \mathbf{V}_i) + a_2 (\mathbf{V}_e - \mathbf{V}_i) \]

(10)

mit

\[\mathbf{P}_e = P_e + P_i = 2P_e \]
\[a_0 = d_0 + g_0 \]
\[b_0 = f_0 + g_0 \]
\[c_0 = e_0 + k_0 \]
\[\alpha = 1, 2, 3. \]

3.2. Aufstellung der Differentialgleichung für den Druckverlauf in einer unendlich langen, zylindersymmetrischen Plasmakäule

Um den Druckverlauf \(p(T) \) berechnen zu können, werden die Gleichungen auf den Fall einer unendlich langen \((\vartheta/\varphi = 0) \) zylindersymmetrischen \((\vartheta/\varphi = 0) \) Plasmakäule spezialisiert. In einem Zylinderkoordinatensystem \((r, \varphi, z) \) besitzen die vorkommenden Vektoren die Komponenten:

\[\mathbf{B}(0, 0, B) \]
\[\nabla p \left(\frac{2g_0}{g_0} \mathbf{E}, 0, 0 \right) \]
\[\nabla \mathbf{f} \left(\mathbf{v}_{r}, \mathbf{v}_{\varphi}, \mathbf{v}_{z} \right) \]
\[\mathbf{f}_{L} \left(\mathbf{v}_{Lr}, \mathbf{v}_{L\varphi}, \mathbf{v}_{Lz} \right) \]

Aus den Maxwell'schen Gleichungen folgt:

\[\mathbf{F} \left(E_{r}, E_{0}, E_{z} \right) \left(\text{rot} \mathbf{E} = 0 \Rightarrow E_{\varphi} = 0 \right), \]
\[\mathbf{j} \left(0, J_{\varphi}, J_{z} \right) \left(\text{div} \mathbf{j} = 0 \Rightarrow J_{r} = 0 \right). \]
Mit der r-Komponente von Gl. (10)

\[
\frac{\partial \tilde{R}}{\partial \varpi} - j_y \tilde{G}_z = a_2 (v_v - v_n) + a_3 (v_y - v_x) + b_3 j_y + c_2 \frac{\partial T}{\partial \varpi},
\]

\[
\frac{\partial \tilde{P}}{\partial \varpi} = j_y B_x,
\]

und

\[
P = \tilde{p}_m + \tilde{p}_s
\]

ergibt sich:

\[
- \frac{\partial \tilde{p}_m}{\partial \varpi} = a_2 (v_v - v_n) + a_3 (v_y - v_x) + b_3 j_y + c_2 \frac{\partial T}{\partial \varpi}.
\]

(11)

Für die benötigten Geschwindigkeitskomponenten \(v_{lr}\) und \(v_{lp}\) ergeben die \(\varphi\)-Komponenten der Gleichungen (8) und (9) die beiden Gleichungen:

\[
- \text{ne}_B v_{lr} = (v_y - v_x) d_z - (v_v - v_n) d_y + \frac{1}{2} s_y \frac{\partial T}{\partial \varpi} c_z,
\]

\[
- \text{ne}_B v_{lp} = (v_y - v_x) q_z - (v_v - v_n) q_y + \frac{1}{2} s_y \frac{\partial T}{\partial \varpi} d_z c_z.
\]

oder

\[
(v_y - v_x) d_z - (v_v - v_n) d_y + \text{ne}_B v_{lr} + \frac{1}{2} s_y \frac{\partial T}{\partial \varpi} c_z = 0,
\]

\[
(v_y - v_x) q_z - (v_v - v_n) q_y + \text{ne}_B v_{lp} + \frac{1}{2} s_y \frac{\partial T}{\partial \varpi} d_z c_z = 0.
\]

(17)

Aus diesen Gleichungen erhält man:

\[
(v_v - v_n) = \frac{4}{d_y q_z - d_z q_y} \left[\left(d_z d_y q_z - d_y d_z q_y \right) \frac{\partial T}{\partial \varpi} - \text{ne}_B \left(d_z q_y + q_y d_z \right) v_{n} \right],
\]

(12a)

und

\[
(v_y - v_x) = \frac{4}{d_y q_z - d_z q_y} \left[\left(d_z d_y q_z - d_y d_z q_y \right) \frac{\partial T}{\partial \varpi} - \text{ne}_B \left(d_z q_y + q_y d_z \right) v_{n} \right] - \text{ne}_B \left(-d_y q_z + d_z q_y \right) v_{n}.
\]

(12b)

Setzt man diese Beziehungen in die Gl. (11) ein und nimmt an, daß kein Massenstrom in r-Richtung fließt \((v_r = 0)\), so erhält man die Differentialgleichung:

\[
\frac{\partial \tilde{p}_m}{\partial \varpi} + D j_y + F \frac{\partial T}{\partial \varpi} = 0
\]

mit

\[
D = b_3 + \frac{a_2 (l_z d_z - l_y q_y)}{q_z d_z - q_y d_z},
\]

\[
F = c_2 - \frac{a_3 (k_z q_z - k_y d_y)}{q_z d_z - q_y d_z}.
\]

(13)

2.3. Berechnung des Druckverlaufs \(p(T)\) bei Gültigkeit der Saha-Gleichung

Setzt man in Gl. (13)

\[
d_y = \frac{1}{B} \frac{\partial p}{\partial \varpi}
\]

ein, so erhält man:

\[
\frac{\partial \tilde{p}_m}{\partial \varpi} + D \frac{\partial p}{\partial \varpi} + F \frac{\partial T}{\partial \varpi} = 0.
\]

(14)

Aus Gl. (14) kann man \(p(T)\) bestimmen, wenn man \(p_0\) und \(B\) als Funktionen von \(p\) und \(T\) kennt.
Aus der Saha-Gleichung

$$\frac{p^2}{\rho_0} = \frac{2Z_e}{Z_0} \left(\frac{4\pi m_e}{\hbar^2} \right) \frac{\gamma_0}{\gamma_1} \exp\left(- \frac{\chi}{kT} \right) \sim \frac{S}{T}$$

(15)

folgt:

$$\rho_0 = p + 2s - 2 \sqrt{ps + s^2} = \rho_0(p, T),$$

$$\rho_1 = \sqrt{ps + s^2} - s = \rho_1(p, T).$$

(16a)

(16b)

Daraus erhält man durch Differenziation:

$$\nabla \rho_1 = \frac{\partial \rho_1}{\partial p} \nabla p + \frac{\partial \rho_1}{\partial T} \nabla T = \frac{\rho_0}{\rho_0 + \rho_1} \nabla p - \frac{\rho_1}{\rho_0 + \rho_1} \frac{2s}{T} \nabla T.$$

(17)

Die j_y-Ströme schwächen das äußere Magnetfeld B_0. Der dadurch verursachte Abfall von B zur Achse hin sorgt gerade für das Gleichgewicht mit dem nach innen ansteigenden Druck. Aus Gl.(10) und

$$\nabla \times B = \mu_0 \nabla \times \frac{\rho_0}{\rho_0 + \rho_1}$$

folgt

$$\nabla p = \frac{1}{\mu_0} \nabla \left(B_y^2 \right) + \frac{1}{\mu_0} \nabla \left(\frac{\rho_0}{\rho_0 + \rho_1} \right).$$

(18)

(19)

Da der letzte Term der Gl.(19) bei der gegebenen Geometrie verschwindet, kann man die verbleibende Gleichung leicht integrieren und erhält:

$$B^*(p) = B^* + 2 \mu_0 \left(\rho_0 - p \right).$$

(20)

B_0 bedeutet dabei die äußere magnetische Induktion, ρ_A den Gasdruck außerhalb der leitfähigen Zone.

Da T eine umkehrbar eindeutige Funktion des Radius r ist, kann man schreiben:

$$\frac{d \rho}{d \omega} = \frac{d \rho}{d T} \frac{d T}{d \omega}.$$

(21)

Unter Verwendung der Gleichungen (13), (17), (20) und (21) erhält man schließlich für $p(T)$ die Differentialgleichung:

$$\frac{d p}{d T} = F \frac{p + s \sqrt{ps + s^2}}{\sqrt{ps + s^2} - s} - F \frac{p + s \sqrt{ps + s^2}}{\sqrt{ps + s^2} - s} \frac{d T}{d T} = \frac{d(T)}{d T}.$$

(22)

Bei der numerischen Integration der Gl.(22) soll die Anfangstemperatur einerseits so hoch sein, dass schon alle Wasserstoffmoleküle dissoziiert sind, andererseits sollen die Wasserstoffatome praktisch noch nicht ionisiert sein. Deshalb wird $T_A = 6 \cdot 10^5 \, \text{K}$ gewählt. Aus Gl.(22) folgt für diese Temperatur, da $p_A \approx 0$:

$$\frac{d p}{d T} = 0.$$

Man erhält also in der Umgebung der Anfangstemperatur T_A für den Druck:

$$p \propto \rho_A = \text{const für } T \approx T_A.$$

Aus Gl.(22) kann man den Druckverlauf bis auf eine Integrationskonstante für den Grenzfall vollständiger Ionisation($p_A \rightarrow 0$) und starker Wirkung des Magnetfeldes ($\omega \approx 1$) bestimmen:
\[
\frac{dP}{P} = \frac{1}{4} \frac{dT}{T} \quad d.h. \quad P \propto T^{1/4}
\]

(23)

\[
\begin{align*}
Q_{00} &= 4 \cdot 10^{-16} \text{ cm}^2 \\
Q_{10} &= 70 \cdot 10^{-16} \text{ cm}^2 \\
Q_{20} &= 30 \cdot 10^{-16} \text{ cm}^2 \quad [6] \\
E_1 &= 13.54 \text{ eV}
\end{align*}
\]

Parameter sind:

\[
\begin{align*}
B_0 &= 10, 20, 30, 50, 70, 100, 150 \text{ kG bei} \\
P_A &= 10^3, 3 \cdot 10^3, 5 \cdot 10^3, 7 \cdot 10^3, 10^4 \text{ dyn/cm}^2 \text{ und} \\
B_0 &= 50, 70, 100, 150 \text{ kG bei } p_A = 10^3 \text{ dyn/cm}^2 \text{ (für } B_0 < 50 \text{ kG ist } \omega < 1).}
\end{align*}
\]

In den Abbildungen 1 bis 6 sind für verschiedene Aussendrucke \(p_A \) die Druckverläufe über der Temperatur mit \(B_0 \) als Parameter aufgetragen. Je höher der Aussendruck ist, umso geringer wird die bei gleichen Aussenmagnetfeld und gleicher Endtemperatur erreichte relative Druck erhöhung. Der Grund dafür ist die Abnahme der freien Weglänge mit steigendem Druck, der den Einfluß des Magnetfeldes verringer.

Die Erweiterung der Rechnungen von Wienbeck um den Einfluß des Nernsteffektes führt also zu einem weiteren Anstieg des Druckes auch bei vollständiger Ionisation (Temperatur über 2 \(\cdot 10^6 \text{ K} \)). Zum Vergleich sind die Druckverläufe für 10 kG und 50 kG bei \(p_A = 5 \cdot 10^3 \text{ dyn/cm}^2 \) nach den beiden Rechnungen in Abb.7 aufgetragen. Die geringen Unterschiede für Temperaturen zwischen \(10^6 \text{ K} \) und \(2 \cdot 10^6 \text{ K} \) haben ihre Ursache in der Verwendung eines anderen Zahlenwertes für den Wirkungsquerschnitt \(Q_{20} \) und im Einfluß der Thermokräfte auch im teilweise ionisierten Gas.

Um den Übergang des Druckverlaufs in die asymptotische Abhängigkeit (23) zu zeigen, ist der Druck für 10 kG, 50 kG und 150 kG und \(p_A = 10^3 \text{ dyn/cm}^2 \) über der Temperatur in Abb.8 in doppeldlogarithmischer Darstellung aufgezeichnet. Die Neigung der Asymptoten nach Gl.(23) wird durch die gestrichelte Kurve angezeigt.
Abb. 1: Druckanstieg im Magnetfeld

Wasserstoff

\[p_A = 1 \cdot 10^3 \text{ [dyn/cm}^2\text{]} \]
Wasserstoff

$p_A = 3 \cdot 10^3 \text{ [dyn/cm}^2\text{]}$

Abb. 2 Druckanstieg im Magnetfeld
Abb. 3: Druckanstieg im Magnetfeld

Wasserstoff

\[P_A = 5 \times 10^3 \text{ [dyn/cm}^2\text{]} \]

\[150 \text{ K} \Gamma \]
\[100 \text{ K} \Gamma \]
\[70 \text{ K} \Gamma \]
\[50 \text{ K} \Gamma \]
\[30 \text{ K} \Gamma \]
\[20 \text{ K} \Gamma \]
\[10 \text{ K} \Gamma \]
\(P_A = 7 \times 10^3 \ [\text{dyn/cm}^2] \)
Wasserstoff

\[p_A = 1 \cdot 10^4 \text{ [dyn/cm}^2\text{]} \]
Wasserstoff

\[p_A = 10^5 \ [\text{dyn/cm}^2] \]

Abb. 6 Druckanstieg im Magnetfeld
Wasserstoff
\[p_A = 5 \cdot 10^3 \text{ [dyn/cm}^2\text{]} \]

mit Thermokräften
ohne Thermokräfte

Abb. 7 Druckanstieg im Magnetfeld mit und ohne Berücksichtigung von Thermokräften
$P_A = 1 \times 10^3 \text{ [dyn/cm}^2\text{]}$

Wasserstoff

P [dyn/cm2]

10^7

10^6

10^5

10^4

10^3

10^2

10^1

10^0

10^{-1}

10^{-2}

10^{-3}

10^{-4}

10^{-5}

10^{-6}

T [°K]

10^3

10^4

10^5

10^6

$T^{3/4}$

100 K_G

50 K_G

10 K_G

Abb. 8 Übergang des Druckanstieges in den asymptotischen Verlauf
4. Berechnung der Wärmeleitfähigkeit

4.1. Der Wärmestrom senkrecht zum Magnetfeld durch Transport von thermischer Energie

Für den Gesamtstrom thermischer Energie senkrecht zum Magnetfeld erhält man aus den Gleichungen (1a), (1b), (1c) und (2a), (2b), (2c) für die ersten und dritten Momente:

\[\mathbf{J}_w = \mathbf{S}_w + \mathbf{S}_L + \mathbf{S}_\text{rel} \]

\[= - \left[\frac{5}{2} \frac{k}{m} \zeta + \frac{5}{2} \frac{k}{m} \zeta \left(1 + \frac{\zeta}{\zeta_w} \right) + \frac{5}{2} \frac{k}{m} \zeta \left(1 + \frac{\zeta}{\zeta_w} \right) \frac{\zeta}{\zeta_w} + \frac{5}{2} \frac{k}{m} \frac{\zeta}{\zeta_w} \right] \mathbf{V} \mathbf{T} + \]

\[- \left[\frac{5}{2} \frac{k}{m} \zeta \omega \zeta + \frac{5}{2} \frac{k}{m} \zeta \omega \zeta \left(1 + \frac{\zeta}{\zeta_w} \right) + \frac{5}{2} \frac{k}{m} \zeta \left(1 + \frac{\zeta}{\zeta_w} \right) \frac{\zeta}{\zeta_w} \right] \mathbf{V} \mathbf{T} \mathbf{X} \mathbf{H} \]

\[+ \frac{5}{2} \frac{k}{m} \zeta \omega \zeta \left(\mathbf{V} \mathbf{v} \right)_L + \frac{5}{2} \frac{k}{m} \zeta \omega \zeta \left(\mathbf{V} \mathbf{v} \right)_L + \]

\[- \frac{5}{2} \frac{k}{m} \zeta \omega \zeta \left(\mathbf{V} \mathbf{v} \right)_L + \frac{5}{2} \frac{k}{m} \zeta \omega \zeta \left(\mathbf{V} \mathbf{v} \right)_L + \]

\[- \frac{5}{2} \frac{k}{m} \zeta \omega \zeta \left(\mathbf{V} \mathbf{v} \right)_L + \frac{5}{2} \frac{k}{m} \zeta \omega \zeta \left(\mathbf{V} \mathbf{v} \right)_L. \]

(24)

Die ersten beiden Summanden in Gl.(24) stellen den nur durch die thermische Teilchenbewegung verursachten Wärmestrom dar (Kontaktwärmeleitung). Für den zweiten, durch das Magnetfeld verursachten Term (\(\propto \mathbf{V} \mathbf{T} \mathbf{X} \mathbf{H} \)), kann man für ein vollionisiertes Plasma aus einer Ionenart und Elektronen eine einfache physikalische Interpretation geben.

Durch ein Flächenlement in der Ebene \(\mathbf{B} \cdot \mathbf{V} \mathbf{T} \) (Abb.9) fliegen im Mittel von unten nach oben schnellere Teilchen als in umgekehrter Richtung, da sie aus einem Bereich größerer Temperatur kommen. Wenn die beiden Teilchenströme (\(\propto n \mathbf{v} \)) sich gegenseitig kompensieren, so könnten sich die beiden Energiestrome, von der Ordnung \(n \mathbf{T} \mathbf{v} \), nicht völlig aufheben, sondern es bleibt ein Wärmestrom \(q \) proportional zu \(\mathbf{V} \mathbf{T} \) übrig. Diese Ströme haben für Ionen und Elektronen verschiedene Vorzeichen und fließen senkrecht zu \(\mathbf{V} \mathbf{T} \) und \(\mathbf{B} \). Da sie parallel zu den Isothermen fließen, tragen sie nicht direkt zur Kühlung des Plasmas und zur Entropieerzeugung bei.

Die restlichen Anteile von \(\mathbf{J}_w \) werden durch die Diffusion der verschiedenen Teilchensorten gegeneinander, d.h. durch deren verschiedene Schwerpunktsgeschwindigkeiten, verursacht. Da für das hier betrachtete Plasma \(\mathbf{v}_1 = \mathbf{v}_r \) ist, verschwinden im Wärmestrom die zu \((\mathbf{v}_e - \mathbf{v}_L) \mathbf{T} \) proportionalen Terme. Die restlichen, sich nicht kompensierenden Teilchenströme transportieren thermische Energie und tragen damit zum gesamten Wärmestrom bei.

Ersetzt man in Gl.(24) die Relativgeschwindigkeiten \(\mathbf{v}_e - \mathbf{v}_L, \mathbf{v}_e - \mathbf{v}_o \) und \(\mathbf{v}_L - \mathbf{v}_o \) durch \(\mathbf{v}_L \) und \(\mathbf{f} \), so erhält man:

\[\mathbf{J}_w = - \zeta \mathbf{v}_L \mathbf{T} - \zeta \mathbf{v}_o \mathbf{T} \mathbf{X} \mathbf{H} - \zeta \mathbf{v}_L \mathbf{V} \mathbf{T} \mathbf{X} \mathbf{H} - \zeta \mathbf{v}_o \mathbf{V} \mathbf{T} \mathbf{X} \mathbf{H} \]

\[- \zeta \mathbf{v}_L \mathbf{V} \mathbf{T} \mathbf{X} \mathbf{H} - \zeta \mathbf{v}_o \mathbf{V} \mathbf{T} \mathbf{X} \mathbf{H}. \]

(25)

mit

\[\zeta_\mathbf{v}_L = \zeta_\mathbf{v}_o + \zeta_\mathbf{v}_r + \zeta_\mathbf{v}_r = \]

\[= \left[\frac{5}{2} \frac{k}{m} \zeta + \frac{5}{2} \frac{k}{m} \zeta \left(1 + \frac{\zeta}{\zeta_w} \right) \zeta_\mathbf{v}_o \zeta + \frac{5}{2} \frac{k}{m} \zeta \left(1 + \frac{\zeta}{\zeta_w} \right) \zeta_\mathbf{v}_o + \frac{5}{2} \frac{k}{m} \zeta \right]. \]
\[K_{\text{th}} = \frac{5}{2} \frac{kr}{\nu_0} \left(1 + \frac{\nu_0}{\nu_1} \right) \frac{\nu_0}{\nu_1} K_{\nu_0} \frac{\nu_0}{\nu_1} \left(1 - \frac{\nu_0}{\nu_1} \right) K_{\nu_1} \frac{\nu_0}{\nu_1} \left(1 + \frac{\nu_0}{\nu_1} \right) K_{\nu_1} \frac{\nu_0}{\nu_1} \left(1 - \frac{\nu_0}{\nu_1} \right) \]

\[R_4 = \frac{R}{2} \frac{R + R_T}{R_0} \left[K_{\nu_0} + K_{\nu_0} \left(1 + \frac{\nu_0}{\nu_1} \right) \left(1 - \frac{\nu_0}{\nu_1} \right) \right] \]

\[R_5 = \frac{R}{2} \frac{R + R_T}{R_0} \left[K_{\nu_0} \nu_0 \omega_{\nu_0} + \nu_0 K_{\nu_0} \left(1 - \frac{\nu_0}{\nu_1} \right) \omega_{\nu_1} \right] \]

\[R_6 = \frac{R}{2} \frac{\nu_0}{\nu_1} \left[K_{\nu_0} \left(3 \nu_0 - 1\right) + \nu_0 K_{\nu_0} \frac{\nu_0}{\nu_1} \left(1 - \frac{\nu_0}{\nu_1} \right) \omega_{\nu_1} \right] \]

\[R_7 = \frac{R}{2} \frac{\nu_0}{\nu_1} \left[K_{\nu_0} \omega_{\nu_0} \left(3 \nu_0 - 1\right) - K_{\nu_0} \omega_{\nu_0} \omega_{\nu_1} \left(1 - \frac{\nu_0}{\nu_1} \right) \right] \]

Für die in Gl.(25) vorkommende Diffusionsgeschwindigkeit der Ladungsträger \(\nu_{\nu_0} - \nu_{\nu_1} \) findet man mit der Umformung

\[\nu_{\nu_0} = \frac{\nu_0}{\nu_1} \left(\begin{array}{c} \nu_0 \frac{\nu_0}{\nu_1} \nu_0 \omega_{\nu_0} \left(3 \nu_0 - 1\right) + \nu_0 \omega_{\nu_0} \omega_{\nu_1} \left(1 - \frac{\nu_0}{\nu_1} \right) \end{array} \right) \]

aus Gl.(10):

\[\left(\nu_{\nu_0} \right)_m = \frac{D_2 d^2}{D_4 d^2 h} - \frac{D_1 d^2}{D_4 d^2 h} - \frac{D_0 D_2 d^2}{D_4 d^2 h} + \frac{D_0 D_1 d^2}{D_4 d^2 h} \]

(26)

Dabei wurden folgende Abkürzungen eingeführt:

\[D_1 = \frac{P a}{q_0 + q_1}, \quad D_2 = \frac{P a}{q_0 + q_1}, \quad D_3 = \frac{C a_{3T}}{q_0 + q_1}, \quad D_4 = \frac{C a_{3T}}{q_0 + q_1} \]

\[\bar{d} = \nu \left(\frac{\nu_0}{\nu_1} \right) + \frac{R}{P} \nu \nu_1 P - \frac{b}{P} \left(\frac{\nu_0}{\nu_1} \right) + \frac{b}{P} \left(\frac{\nu_0}{\nu_1} \right) \]

\[\bar{d}^T = \frac{\nu_0}{\nu_1} \left(\begin{array}{c} \nu_0 \omega_{\nu_0} \left(3 \nu_0 - 1\right) + \nu_0 \omega_{\nu_0} \omega_{\nu_1} \left(1 - \frac{\nu_0}{\nu_1} \right) \end{array} \right) \]

(27a)

(27b)

(27c)

Die zu \(D_2 \) und \(D_4 \) proportionalen Termen in Gl.(26) stellen die normale Diffusion und die Terme proportional zu \(D_3 \) die Thermoidiffusion dar. Entsprechend diesem Ergebnis und der Gl.(25) kann man den Wärmestrom \(S_m \) aus drei Anteilen zusammensetzen:

\[S_m = S_{mK} + S_{mD} + S_{mTD} \]

(28)

\(S_{mK} \) ist der Wärmestrom durch Kontaktwärmeleitung,

\(S_{mD} \) ist der Wärmestrom durch normale Diffusion,

\(S_{mTD} \) ist der Wärmestrom durch Thermodiffusion.

Da im folgenden nur noch die \(r \)-Komponenten der Wärmeleistrahen behandelt werden, wird der Index "\(r \)" nicht mehr geschrieben.

Für \(S_{mK} \) erhält man aus Gl.(25):

\[S_{mK} = \frac{R}{\nu_0} \frac{d \nu_0}{\nu_0} \]

(29)

Für \(S_{mD} \) ergibt sich aus den Gleichungen (25), (26), (27a) und (27b):

\[S_{mD} = \frac{R}{\nu_0} \frac{d \nu_0}{\nu_0} \left[\frac{R}{\nu_0} + \frac{d \nu_0}{\nu_0} \right] \]

(30)

Mit den Gleichungen (3), (17) und (21) kann man dieses Ergebnis umformen:

\[S_{mD} = \frac{R}{\nu_0} \frac{d \nu_0}{\nu_0} \]

mit

\[R = \frac{R}{\nu_0} \frac{d \nu_0}{\nu_0} \]

(31)
\(S_{TD} \) kann man mit Hilfe der Gleichungen (25), (26) und (27c) ebenfalls in der für Wärmestrome gewünschten Form schreiben:

\[
S_{TD} = -K_{TP} \frac{\partial T}{\partial \nu}
\]

mit

\[
K_{TP} = -\left[R_s \frac{Q_{TSC} + Q_{TC}}{Q_s + Q_T} - R_p \frac{a_{SC} - a_{TS}}{a_T + a_S} \right]
\]

Es ergibt sich also, daß der gesamte radiale Wärmestrom proportional zu \(\frac{\partial T}{\partial \nu} \) geschrieben werden kann:

\[
S = -\left(\kappa_s + \kappa_p + K_{TP} \right) \frac{\partial T}{\partial \nu}
\]

4.2. Der Energiestrom senkrecht zum Magnetfeld durch Transport von Enthalpie

Zu dem aus den Momenteleigungen berechneten Strom thermischer Energie tritt im Ionisationsbereich ein weiterer Anteil. Wegen der Aufnahme der Ionisierungsoptisenergie und der Vergrößerung der Teilchenzahl tragen die nach außen diffundierenden Ladungsträger einen größeren Energiestrom als die nach innen diffundierenden Atome. Für das unendlich lange, zylindersymmetrische Plasma ist auch dieser Energiestrom proportional zu \(\frac{\partial T}{\partial \nu} \):

\[
W_s = -\kappa_s \frac{\partial T}{\partial \nu}
\]

Die von Wienbecke [9] durchgeführte Berechnung der Reaktionswärmeleitungsfähigkeit \(\kappa_R \) soll nun noch durch die Berücksichtigung der Thermokräfte in den Momenteleigungen ergänzt werden. Diese äußern einen direkten Einfluß durch die Modifizierung der Diffusionsströme aus. Dazu kommt noch ihre indirekte Auswirkung auf den Ionisationsgrad und die freien Weglängen durch die Änderung des Druckverlaufes \(p(T) \).

Die Enthalpien pro Masseneinheit sind:

\[
\begin{align*}
P_r &= \frac{k}{2} \frac{h}{m_0} + \frac{D_m}{2m_0}, \\
\hat{P}_s &= \frac{5}{2} \frac{h}{m_0} + \frac{E_1}{m_0} + \frac{D_m}{2m_0}, \\
\hat{P}_\phi &= \frac{5}{2} \frac{h}{m_0} \\
\delta_m &= \text{Dissociationsenergie des Moleküls}, \\
E_1 &= \text{Ionisierungsenergie des Atoms}.
\end{align*}
\]

Mit den Bedingungen der Quasineutralität und der Stromlosigkeit in \(r \)-Richtung erhält man für den radialen Energiestrom:

\[
W_s = ne \left(\frac{5}{2} \frac{h}{kT} + \frac{E_1}{kT} \right) \left(\nu_r - v_r \right) = -\kappa_s \frac{\partial T}{\partial \nu}
\]

Mit den Gleichungen (17), (21), (26), (27a), (27b) und (27c) kann man die Gl.(37) in die gewünschte Form nach Gl.(35) bringen und erhält:

\[
\begin{align*}
\kappa_s &= \frac{5}{2} \frac{h}{kT} \left(\frac{a_T}{a_s + a_T} \frac{P_s}{P_s + P} \right) \frac{dS}{dT} + \\
&\quad \left(\frac{4}{8} \frac{a_T}{a_s + a_T} - \frac{a_s}{a_s + a_T} \right) \frac{dP}{dT}.
\end{align*}
\]
4.3. Die gesamte Wärmeleitfähigkeit von Wasserstoff

Der gesamte Energiestrom \(W \) in radialer Richtung beträgt:

\[
W = W_0 - (k_0 + k_1 + k_{TD} + k_R) \frac{\partial T}{\partial r} = -k_{TD} \frac{\partial T}{\partial r}
\]
(39)

Beim Übergang zur praktisch vollständigen Ionisation verschwinden die Wärmeleitungscoefficienten \(k_{OD}, k_{TD} \) und \(k_R \). Für Temperaturen oberhalb von \(2 \cdot 10^6 \) K gehen \(k_{OD} \) und \(k_{TD} \) wie \(p_o \zeta_o \) gegen Null, wobei \(k_{OD} \) immer etwa um eine Zehnerpotenz größer ist als \(k_{TD} \).

Wenn die Temperatur so hoch ist, dass \(\omega \zeta_o \) und \(\Omega \zeta_1 \) groß gegen \(I \) sind, dann dominiert die Kontaktwärmeleitfähigkeit der Ionen über die der Elektronen, da diese wegen ihrer größeren Gyrofrequenz stärker durch das Magnetfeld gebremst werden. Für \(k_{1K} \) und \(k_{eK} \) erhält man folgende asymptotische Verläufe \((\Omega \zeta_1, \omega \zeta_o \gg I) \):

\[
K_{1K} \rightarrow \frac{5 \cdot p \cdot k}{5 \cdot n_e} \frac{1}{2 \cdot \zeta_o} \ll \frac{1}{\omega \zeta_o} \ll \frac{1}{T}
\]
(40)

\[
K_{eK} \rightarrow \frac{5 \cdot p \cdot k}{m_e} \frac{1}{4 \cdot \zeta_o} \ll \frac{1}{m_e \cdot \omega \zeta_o} \ll \frac{1}{T}
\]

Für \(\omega \zeta_o \gg T \) kann man auch für \(k_D \) einen einfachen asymptotischen Verlauf angeben. Man erhält aus den Gleichungen (23) und (31):

\[
K_D = \frac{4 \cdot 7 \cdot p \cdot k}{m_e} \frac{1}{4 \cdot \zeta_o} \ll \frac{1}{4 \cdot 7 \cdot k_{eK}}
\]
(41)

Bemerkenswert an Gl.(41) ist das negative Vorzeichen von \(k_D \), welches ausdrückt, daß die Wechselwirkung der azimuthalen Strömungen mit dem axialen Magnetfeld einen Transport von Wärme in Richtung des Temperaturgradienten, d.h. in das Plasma hinein verursacht. Diese Verminderung der gesamten Wärmeleitfähigkeit spielt allerdings nur eine geringe Rolle, da \(k_D \) nur von Größenordnung des \(k_{eK} \), also klein gegen \(k_{1K} \), ist.

Aus G1.(40) erkennt man, dass \(k \) bei hohen Temperaturen schwächer als mit \(1/T \) abfällt, da in langsam mit \(T \) zunimmt.

In den Abbildungen 10 bis 15 sind die, unter Verwendung des nach Abschnitt 3.3. bestimmten Druckverlaufs, berechneten Wärmeleitfähigkeiten als Funktion der Temperatur für verschiedene Magnetfelder \(B_o \) und Aussendrucke \(p_a \) aufgezeichnet. Bei der Rechnung wurden die schon in Abschnitt 3.3 angegebenen Werte für \(Q_{OD}, Q_{10}, Q_{60} \) und \(E_4 \) verwendet.

Ein Vergleich der in der Wärmeleitfähigkeit \(k \) enthaltenen Reaktionswärmeleitfähigkeit \(k_R \) mit den Resultaten von Wieenecke zeigte, daß Lage und Größe des Maximums von \(k_R \) nach den beiden Rechnungen nur unwesentlich voneinander abweichen, während \(k_R \) zu höheren Temperaturen hin nach den neuen Rechnungen etwas steiler abfällt.

In Abb.16 sind die verschiedenen Anteile von \(k \) für \(p_a = 5 \cdot 10^3 \) dyn/cm² und \(B_o = 50 \) kG aufgezeichnet. Man erkennt den dominierenden Einfluß von \(k_{OD} \) im Ionisationsbereich. Die in den Abbildungen 17 bis 22 dargestellten Kurven für \(k \) bis zu \(T = 10^6 \) K durchlaufen ein Maximum. Der Grund dafür ist der geringe Einfluß des Magnetfeldes auf die Bewegung der Ionen für \((\Omega \zeta_1)^2 < 1 \) und die starke Bremsung für große \(\Omega \zeta_1 \). Jenseits des Maximums mündet die Kurve für \(k \) allmählich in den asymptotischen Verlauf proportional zu \(\ln A/T \) nach Gl.(40) ein.
Wasserstoff

\[p_A = 1 \times 10^3 \text{[dyn/cm}^2\text{]} \]

Abb. 10 Wärmeleitfähigkeit von Wasserstoff im Magnetfeld
\[\kappa \text{ [erg/cm\(^\text{s}\)/K]} \]

Wasserstoff

\[p_A = 3 \cdot 10^3 \text{ [dyn/cm}^2\text{]} \]

Abb.11 Wärmeleitfähigkeit von Wasserstoff im Magnetfeld
Wasserstoff

$P_A = 5 \cdot 10^3 [\text{dyn/cm}^2]$
Wasserstoff

\[P_A = 7 \times 10^3 \text{[dyn/cm}^2\text{]} \]
Wasserstoff

\[p_A = 1 \times 10^4 \text{ [dyn/cm}^2\text{]} \]

Abb.14 Wärmeleitfähigkeit von Wasserstoff im Magnetfeld
Abbild. 15 Wärmeleitfähigkeit von Wasserstoff im Magnetfeld

\[\kappa \left[\text{erg/}^\circ \text{Kcm.s} \right] \]

\[p_A = 1 \cdot 10^5 \text{ [dyn/cm}^2 \text{]} \]

\[50 \text{ K} \Gamma \]

\[150 \text{ K} \Gamma \]
Abb. 16 Die verschiedenen Anteile der Wärmeleitfähigkeit von Wasserstoff im Magnetfeld für
\[p_A = 5 \cdot 10^3 \text{ dyn/cm}^2 \] und \[B = 50 \text{ KG} \]
Abb. 17: Wärmetransferkoeffizient von Wassergas im Wassergas mit Vollstreckung istlation

\[pA = 1 \cdot 10^3 \text{ [dyn/cm}^2] \]

\[n \cdot \text{erg/cm} \cdot \text{s} \cdot \text{K} \]
κ [erg/(K cm s)]

$\rho_A = 5 \times 10^3$ [dyn/cm²]

Wasserstoff

Abb.18 Wärmeleitfähigkeit von Wasserstoff im Magnetfeld bei vollständiger Ionisation
\[\kappa \left[\frac{\text{erg}}{\circ\text{K} \cdot \text{cm} \cdot \text{s}} \right] \]

\[p_A = 5 \cdot 10^3 \text{ [dyn/cm}^2\text{]} \]

Wasserstoff

Abb. 19 Wärmeleitfähigkeit von Wasserstoff im Magnetfeld bei vollständiger Ionisation
Abb. 20 Wärmeleitfähigkeit von Wasserstoff im Magnetfeld bei vollständiger Ionisation
\[\mathcal{K} \left(\frac{\text{erg}}{\circ \text{K} \cdot \text{cm} \cdot \text{s}} \right) \]

\[p_A = 1 \cdot 10^4 \, [\text{dyn/cm}^2] \]

Wasserstoff

Abb. 21 Wärmeleitfähigkeit von Wasserstoff im Magnetfeld bei vollständiger Ionisation
Abb. 22 Wärmeleitfähigkeit von Wasserstoff im Magnetfeld bei vollständiger Ionisation
Literaturverzeichnis

Bezeichnungen

\[\ln \Lambda = \ln \left(\frac{2h \tau T}{c^2} \left(\frac{kT}{\pi e^2 \alpha n} \right)^{1/2} \right) \]

\[\nu_i = \frac{kT \alpha e^{\ln \Lambda} \alpha n}{\sqrt{\pi} m_e (kT)^{1/2}} \]

\[\nu_{10} = \sqrt{\frac{2m_e}{m_0}} \nu_i \]

\[\nu_{10} = \frac{46}{3! \pi} \nu_{10} Q_{10} \left(\frac{kT}{m_e} \right)^{1/2} \]

\[\nu_{20} = \frac{32}{3! \pi} \nu_{10} Q_{20} \left(\frac{kT}{m_e} \right)^{1/2} \]

\[\nu_{20} = 0.925 \nu_{10} \]

\[\frac{1}{\nu_{10}} = 4.3 \nu_{20} \]

\[\frac{1}{\nu_{20}} = 0.9 \nu_{10} \]

\[\frac{1}{\nu_{10}} = 0.325 \nu_{20} \]

\[\frac{1}{\nu_{10}} = 1.866 \nu_i \]

\[\frac{1}{\nu_{20}} = 0.1 \nu_i \]

\[\frac{1}{\nu_{20}} = 0.5 \nu_{10} \]

\[\frac{1}{\nu_{10}} + \frac{1}{\nu_{20}} \]

\[K_e = \frac{1}{1 + (\omega \nu_e)^2} \]

\[\alpha_e = 1 - 0.1e \nu_{10} \]

\[\alpha_e = 1 - 0.1K_e \nu_{10} \]

\[\alpha_e = 0.1K_e \nu_{10} \nu_{10} \nu_{10} \]

\[\nu_{10} = 0.3 \nu_{10} \nu_{10} \nu_{10} \]

\[\nu_{10} = 0.3K_e \nu_{10} \]

\[\nu_{10} = -0.3K_e \nu_{10} \nu_{10} \]

\[\alpha_e = 1 - 0.9 \nu_{10} \nu_{10} \nu_{10} \]

\[\nu_{10} = 1 - 0.9 \nu_{10} \nu_{10} \nu_{10} \]

\[\nu_{10} = 0.9K_e \nu_{10} \]

\[\nu_{10} = 0.9K_e \nu_{10} \nu_{10} \]

\[\nu_{10} = 1 - 0.9 \nu_{10} \nu_{10} \nu_{10} \]

\[\alpha_e = 1 - 0.9 \nu_{10} \nu_{10} \nu_{10} \]

\[\nu_{10} = 0.9K_e \nu_{10} \]

\[\nu_{10} = 0.9K_e \nu_{10} \nu_{10} \]

\[\nu_{10} = 1 - 0.9 \nu_{10} \nu_{10} \nu_{10} \]

\[\alpha_e = 1 - 0.9 \nu_{10} \nu_{10} \nu_{10} \]

\[\nu_{10} = 0.9K_e \nu_{10} \]

\[\nu_{10} = 0.9K_e \nu_{10} \nu_{10} \]

\[\nu_{10} = 1 - 0.9 \nu_{10} \nu_{10} \nu_{10} \]

\[\alpha_e = 1 - 0.9 \nu_{10} \nu_{10} \nu_{10} \]
\[k_z = \frac{\varepsilon_z}{A_1(\varepsilon_z \varepsilon_0)^{1/2}} \]

\[\beta_1 = A_1 - 0,15 \varepsilon_n \varepsilon_0 - 0,15 \varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right)^{1/2} \]

\[\beta_2 = A_1 - 0,15 \varepsilon_n \varepsilon_0 - 0,15 \varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right)^{1/2} \]

\[\beta_3 = 0,15 \varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right)^{1/2} \]

\[\varepsilon_z = \frac{k_1}{\varepsilon_0} \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \varepsilon_z - \varepsilon_0 \]

\[\varepsilon_0 = \frac{k_1}{\varepsilon_0} \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \varepsilon_z - \varepsilon_0 \]

\[\varepsilon_1 = \frac{k_1}{\varepsilon_0} \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \varepsilon_z - \varepsilon_0 \]

\[\varepsilon_2 = \frac{k_1}{\varepsilon_0} \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \varepsilon_z - \varepsilon_0 \]

\[\varepsilon_3 = \frac{k_1}{\varepsilon_0} \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \varepsilon_z - \varepsilon_0 \]

\[a_1 = \frac{n \varepsilon_0}{n} \left[\varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) + \varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \right] \]

\[a_2 = \frac{n \varepsilon_0}{n} \left[\varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) + \varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \right] \]

\[a_3 = \frac{n \varepsilon_0}{n} \left[\varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) + \varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \right] \]

\[b_1 = \frac{m \varepsilon_0}{m} \left[\varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) + \varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \right] \]

\[b_2 = \frac{m \varepsilon_0}{m} \left[\varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) + \varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \right] \]

\[b_3 = \frac{m \varepsilon_0}{m} \left[\varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) + \varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \right] \]

\[c_1 = e_1 + b_1 \]

\[c_2 = e_2 + b_2 \]

\[c_3 = e_3 + b_3 \]

\[F = c_2 - \frac{a_1(k_1 \varepsilon_k - \varepsilon_n \varepsilon_0) + a_3(k_1 \varepsilon_k - \varepsilon_n \varepsilon_0)}{b_1 \varepsilon_k - b_3 \varepsilon_k} \]

\[D = b_1 + \frac{a_1(k_1 \varepsilon_k - \varepsilon_n \varepsilon_0) + a_3(k_1 \varepsilon_k - \varepsilon_n \varepsilon_0)}{b_1 \varepsilon_k - b_3 \varepsilon_k} \]

\[R_1 = \frac{R}{R + \frac{R}{P}} \left[k_1 \varepsilon_k + k_2 \varepsilon_k \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) - \varepsilon_n \varepsilon_0 \right] \]

\[R_2 = \frac{R}{R + \frac{R}{P}} \left[-k_1 \varepsilon_k \varepsilon_n \varepsilon_0 + k_2 \varepsilon_k \varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) - \varepsilon_n \varepsilon_0 \right] \]

\[R_3 = \frac{R}{R + \frac{R}{P}} \left[k_1 \varepsilon_k \left(\frac{b_1 \varepsilon_k - A_1}{\varepsilon_k} \right) + k_1 \varepsilon_k \varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) - \varepsilon_n \varepsilon_0 \right] \]

\[R_4 = \frac{R}{R + \frac{R}{P}} \left[k_1 \varepsilon_k \varepsilon_n \varepsilon_0 \left(\frac{b_1 \varepsilon_k}{\varepsilon_k} - A \right) - k_2 \varepsilon_k \varepsilon_n \varepsilon_0 \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) \left(\frac{A_1}{\varepsilon_z \varepsilon_0} \right) - \varepsilon_n \varepsilon_0 \right] \]