Nina Heitmann

Lösung energiewirtschaftlicher Probleme mit Hilfe linearer Programmierung

Solution of energy problems with the help of linear programming

IPP 16/6
Oktober, 2005
Lösung energiewirtschaftlicher Probleme mit Hilfe linearer Programmierung

Diplomarbeit im Studiengang
Wirtschaftsmathematik

an der Mathematisch - Naturwissenschaftlichen Fakultät der Universität Augsburg

Vorgelegt von
Nina Heitmann

Oktober 2005

unter Betreuung von:
Dr. Thomas Hamacher
Max-Planck-Institut für
Plasmaphysik in Garching

Erstgutachter:
Priv.-Doz. Dr. Bernhard Schmidt
Institut für Mathematik
Lehrstuhl für Diskrete Mathematik,
Optimierung und Operations Research

Zweitgutachter:
Prof. Dr.-Ing. Kurt Behringer
Institut für Physik
Lehrstuhl für Experimentelle Plasmaphysik
Inhaltsverzeichnis

1 Einleitung .. 1
 1.1 Motivation 2
 1.1.1 Probleme des CO₂-Emissionsanstiegs 2
 1.1.2 Notwendigkeit der Umstrukturierung des Kraftwerksparks 3
 1.2 Energieversorgung in Deutschland 4
 1.3 Windenergie in Deutschland 5
 1.3.1 Probleme der Nutzung der Windenergie 7

2 Die Modellierung des Kraftwerksparks und des Übertragungsnetzes 13
 2.1 Die Struktur des Modells 13
 2.2 Eingabedaten 16
 2.2.1 Kosten 17
 2.2.2 Nachfrage 18
 2.2.3 Wind 19
 2.2.4 Übertragungsnetz 20
 2.2.5 Kraftwerke 21
 2.3 Modellierung 22

3 Lineare Optimierungsprobleme und deren Lösungsalgorithmen 23
 3.1 Der Simplex-Algorithmus 25
 3.1.1 Das lineare Problem in allgemeiner Form 25
 3.1.2 Der Simplex-Algorithmus mit beschränkten Variablen 31
3.1.3 Entartung und Komplexität .. 35
3.1.4 Farkas' Lemma ... 36
3.1.5 Das Karush-Kuhn-Tucker-Optimalitäts-Kriterium 37
3.1.6 Das duale Problem .. 39
3.1.7 Wirtschaftliche Betrachtungsweise der dualen Lösung 42
3.2 Barrier-Methode ... 43
3.3 Laufzeitvergleiche der von Cplex zur Verfügung gestellten Algorithmen 48
 3.3.1 Darstellung des Problems als Matrix 48
 3.3.2 Vergleich und Zusammenfassung der Algorithmen 52

4 Wahl und Auswertung verschiedener Szenarien 53

4.1 Ein Auswahlverfahren für die Zeitreihen 55
4.2 Vergleich unterschiedlicher Zeitreihen 58
 4.2.1 Zusammenfassung ... 60
4.3 Gaspreisvariation ... 60
 4.3.1 Bestimmung des Kraftwerkeinsatzes für einen Gaspreis von 0,9 Euro ct/kWh .. 61
 4.3.2 Bestimmung des Kraftwerkeinsatzes für einen Gaspreis von 1,3 Euro ct/kWh .. 61
 4.3.3 Bestimmung des Kraftwerkeinsatzes für einen Gaspreis von 2,4 Euro ct/kWh .. 65
 4.3.4 Zusammenfassung ... 69
4.4 \(CO_2 \)-Emissionsreduzierung .. 70
 4.4.1 Ergebnisse ... 71
4.5 Variation der WEA ... 77
 4.5.1 Preisbildung im öffentlichen Strommarkt 79
 4.5.2 Interpretation der marginalen Kosten 81

5 Zusammenfassung und Ausblick 86
Abbildungsverzeichnis

1.1 Entwicklung der Primärenergie von 1850 bis 2004	1
1.2 Bruttostromerzeugung nach Energieträgern 2004	4
1.3 Entwicklung der Nutzung des Windes zur Erzeugung von Energie	5
1.4 Installierte Windenergieanlagen in Deutschland 2004	6
1.5 Leistung in Abhängigkeit der Windgeschwindigkeit	8
1.6 Leistungsbeiwert und elektrische Wirkleistung in Abhängigkeit der Windgeschwindigkeit	10
1.7 Rayleigh-Verteilung und Dichtefunktion in Abhängigkeit der Windgeschwindigkeit	11
2.1 Das modellierte Verbundnetz	14
2.2 Modellierung der Knoten für drei Beispieloorte	15
2.3 Schematische Darstellung des Programmablaufs	16
2.4 Typischer Lastgang für eine Woche im Sommer im Vergleich zum Winter	18
2.5 Restnachfrage für eine Woche im Sommer im Vergleich zum Winter	19
2.6 Windangebot einer Woche im Winter für Nord- und Süddeutschland	20
2.7 Windangebot versus Stromnachfrage einer Woche im Winter für Nord- und Süddeutschland	20
2.8 Transportkapazitäten	21
3.1 Geometrische Darstellung des Farkas’ Lemmas	37
3.2 Hilfsfunktion und Barrier-Funktion	47
3.3 Laufzeit in Abhängigkeit der Zeitschritte	52
4.27 Kostenanstieg beim Neubau von 4,5 GW Windleistung in Abhängigkeit bereits genutzter Kapazitäten 78
4.28 Strompreisbildung in Nord- und Süddeutschland mit und ohne Windenergieanlagen .. 79
4.29 Verlauf der Grenzkosten der Nachfrage ... 81
4.30 Zusammenhang von Windangebot, Nachfrage und Grenzkosten 83
4.31 Grenzkosten der Onshore-Windenergieanlagen 84
Tabellenverzeichnis

2.1 Spezifische Kosten der Stromerzeugung für das Jahr 2030 17
2.2 Technische Parameter der einzelnen Kraftwerke 22

3.1 Transformationsregeln zwischen (LP) und (DP) 40
3.2 Dimension der Matrizen in Abhängigkeit der Anzahl der Zeitschritte t 49
3.3 Indexmengen .. 49

4.1 Installierte Wasserkraftwerke ... 54
4.2 Installierte Braunkohlekraftwerke ... 55
4.3 Installierte Windenergieanlagen ... 70
4.4 Installierte Kernkraftwerke ... 71
4.5 \(CO_2 \)-Emission der einzelnen Energieträger .. 71
4.6 Investitions-, Fix- und variable Kosten der Kraftwerke 77
Kapitel 1

Einleitung

In den letzten beiden Jahrhunderten hat der weltweite Energieverbrauch, bedingt durch die
durch die fortschreitende technische Entwicklung und die wachsende Bevölkerung, deutlich zugenommen
(sehe Abbildung 1.1).

Abbildung 1.1: Entwicklung der Primärenergie von 1850 bis 2004

Der Weltennergieverbrauch basiert derzeitig zu 85% auf fossilen Energieträgern. Der Energie-
verbrauch ist allerdings sehr ungleichmäßig über die Welt verteilt: Die Industriestaaten, die
18% der Weltbevölkerung ausmachen, verbrauchen 57% der Energie, dem restlichen Teil der
Weltbevölkerung (82%) stehen damit nur 43% der Energie zur Verfügung [29]. Der Einsatz
von fossilen Brennstoffen wird nach Angaben der Internationalen Energie Agentur (IEA) in

KAPITEL 1. EINLEITUNG

Zukunft weiter zunehmen [21]. Es ist davon auszugehen, dass sich die Weltbevölkerung in den nächsten Jahren bis 2050 auf 10 Milliarden Menschen erhöhen und damit einen Anstieg um das Dreifache des derzeitigen Energieverbrauchs nach sich ziehen wird. Dies ist auch durch technologischen Fortschritt und zunehmende Industrialisierung in den Entwicklungs- und Schwellenländern bedingt [30].

1.1 Motivation

Zur Erhaltung der heutigen Lebensumstände ist es absolut notwendig, das Kyoto-Protokoll umzusetzen. Der umwelttechnische Aspekt der CO$_2$-Emissionsreduzierung wird begleitet von der Umstrukturierung des herkömmlichen Kraftwerksparks hin zur Förderung schadstoffemissionsärmerer Kraftwerkssysteme. Der Schwerpunkt wird auf die Wirtschaftlichkeit der Integration von Windenergieanlagen im Hinblick auf die Standortwahl und die damit verbundene Strompreisentwicklung gelegt. Es werden Veränderungen der Fahrweise und des Einsatzes von Kraftwerken in Bezug auf die Gaspreisverhältnisse unter dem Einfluss der CO$_2$-Konzentration im Hinblick auf eine Möglichkeit der Umsetzung des Kyoto-Protokolls berücksichtigt werden.

1.1.1 Probleme des CO$_2$-Emissionsanstiegs

Unsere Atmosphäre ist von einem Schutzschild bestehend aus so genannten Treibhausgasen umgeben, welche das Austreten eines Teils der Wärme ins All verhindern und so für eine angenehme Temperatur auf der Erde sorgt. Durch die heutige Lebensweise der Menschen, den Verkehr, die Industrie und die zahlreichen Haushalte wird ein Anstieg der Treibhausgase Ozon (O$_3$), Stickoxide, insbesondere N$_2$O, Methan (CH$_4$), FCKW und vor allem von CO$_2$ und Wasserdampf verursacht. Die erhöhte Konzentration an Treibhausgasen in der Atmosphäre erschwert das Austreten der langwelligen Wärmestrahlung. Die Erdoberfläche wird durch die reflektierte Wärmestrahlung mehr und mehr erhitzt, bis die Natur ein Gleichgewicht zwischen
eingehender und ausgehender Wärmestrahlung herstellen kann. Das durch den Menschen verursachte Phänomen dieser globalen Erwärmung wird als anthropogener Treibhauseffekt bezeichnet.

1.1.2 Notwendigkeit der Umstrukturierung des Kraftwerksarks

Bis 2002 hatte die Bundesrepublik eine Reduzierung um 19% erreicht [31]. Um jedoch eine weitere Reduktion zu erlangen, ist eine Umstrukturierung der derzeitigen Energieerzeugung notwendig. Konkrete Maßnahmen, welche auf nationaler Ebene getroffen werden, sind u. a. der Ausbau erneuerbarer Energien (EE), die Einführung des Emissionshandels¹ und die Steigerung der Energieeffizienz des bestehenden Kraftwerksarks durch beispielsweise einen weiteren Ausbau und Einsatz der Kraft-Wärme-Kopplung oder durch eine verstärkte Nutzung von Gas- und Dampfturbinen (GuD).

Nicht nur die essentielle Reduzierung der CO₂-Emission, sondern auch die vorhersehbare Verknappung² der fossilen Energieträger führen zu der Notwendigkeit der Erneuerung und Umstrukturierung der bestehenden Kraftwerkskonstellation.

²Statistischen Berechnungen zu Folge verzeichnen die Primärenergieträger Öl, Gas und Kohle bei konstantem Verbrauch eine Reichweite ihrer Reserven von 30, 60 und 300 Jahren [29].
1.2 Energieversorgung in Deutschland

In Deutschland bilden derzeit die fossilen Energieträger wie Kohle, Erdöl und Erdgas sowie der nukleare Energieträger Uran die Grundlage der Energieversorgung. In Abbildung 1.2 auf Seite 4 ist die Stromerzeugung je Energieträger im Jahre 2004 dargestellt. Dabei nimmt die Kernenergie mit 167 TWh von insgesamt 606,5 TWh eine führende Position ein. An zweiter Stelle steht die Braunkohle mit 158,5 TWh, dicht gefolgt von der Steinkohle mit 138 TWh. Erneuerbare Energien wie Wind, Wasserkraft und Biomasse tragen mit 56 TWh, (9,3%) zur Stromerzeugung bei.

![Diagramm: Bruttostromerzeugung 2004 nach Energieträgern](image)

Abbildung 1.2: Bruttostromerzeugung nach Energieträgern 2004

Instrumente und Maßnahmen der Bundesregierung zur Förderung der Nutzung von u.a. Wind, Sonne und Wasser zur Erzeugung von Energie haben zu einem Boom der Entwicklung von erneuerbaren Energien geführt. Dies brachte nicht nur positive Effekte für die Umwelt, vielmehr erlangte die Bundesrepublik auf diese Weise eine führende Position in diesem technischen Gebiet. Der Startschuss für die Förderung erneuerbarer Energien erfolgte durch das Stromeinspeisegesetz vom 1. Januar 1991. Darin verpflichten sich die Energieversorgungsunternehmen, aus regenerativen Energien gewonnenen Strom zu festgelegten Tarifen abzunehmen. Die für die Betreiber von Windenergieanlagen (WEA) festgelegte degressive Vergütung beläuft sich auf ca. 8,5 ct/kWh. Dies führt zu Mehrkosten für die Verbraucher von ca. 1,08 Euro pro Monat und Haushalt bei einem Stromverbrauch von 3500 kWh im Jahr [7].

Der daraus resultierende Aufschwung in Fertigung und Forschung von Anlagen zur Erzeugung von u.a. Wind, Sonne und Wasser führt zu einer Steigerung der Erzeugung erneuerbarer Energien. Die Förderung erneuerbarer Energien hat nicht nur positive Effekte für die Umwelt, sondern hat auch zu einer Verunsicherung der Stromversorger geführt. Diese Verunsicherung ist auf die degressive Vergütung der Stromerzeugung zurückzuführen. Die degressive Vergütung beläuft sich auf ca. 8,5 ct/kWh. Dies führt zu Mehrkosten für die Verbraucher von ca. 1,08 Euro pro Monat und Haushalt bei einem Stromverbrauch von 3500 kWh im Jahr [7].

Die Förderung erneuerbarer Energien hat nicht nur positive Effekte für die Umwelt, sondern hat auch zu einer Verunsicherung der Stromversorger geführt. Diese Verunsicherung ist auf die degressive Vergütung der Stromerzeugung zurückzuführen. Die degressive Vergütung beläuft sich auf ca. 8,5 ct/kWh. Dies führt zu Mehrkosten für die Verbraucher von ca. 1,08 Euro pro Monat und Haushalt bei einem Stromverbrauch von 3500 kWh im Jahr [7].

Quelle: Arbeitsgemeinschaft Energiebilanzen AGEB; Stand 25.07.2005 [1]
KAPITEL 1. EINLEITUNG

Für die Zukunft wird der Nutzung der Windenergie das größte Potential zugesprochen, da in ihr noch nicht genutzte Ausbaumöglichkeiten vor allem bei der Nutzung des Windes auf See gesehen werden. Ende 2003 waren schon rund die Hälfte der in Europa installierten Windenergieanlagen in Deutschland installiert.

Die Abbildung 1.3 stellt die Entwicklung der Nutzung der Windenergie in Deutschland in den Jahren 1990 bis 2004 graphisch dar. Ein stetiger Anstieg ist seit Anfang der 90er Jahre zu erkennen, dieser wird durch den geplanten Ausbau auch weiterhin zunehmen [7]. Es ist ein Anstieg von 40 GWh 1990 auf 25000 GWh im Jahre 2004 zu verzeichnen. Der maximale Entwicklungsschub ist für das Jahr 2000 verzeichnet; dort stieg die Nutzung um 72% im Vergleich zum Vorjahr.

Abbildung 1.3: Entwicklung der Nutzung des Windes zur Erzeugung von Energie

1.3 Windenergie in Deutschland

Die räumliche Konzentration der Windenergieanlagen im Norden Deutschlands, welcher eine geringere Nachfrage als der Süden aufweist sowie die zeitlichen Schwankungen des Auftretens von Wind führen zu neuen Problemen und Herausforderungen in der deutschen Ener-
Abbildung 1.4: Installierte Windenergieanlagen in Deutschland 2004

1.3.1 Probleme der Nutzung der Windenergie

Bei der im Wind enthaltenen Energie spricht man von kinetischer Energie. Diese steigt linear mit der Masse m und mit der zweiten Potenz der Geschwindigkeit v.

$$ E = \frac{1}{2} mv^2 \quad (1.1) $$

Die Masse m ist wiederum linear abhängig von der Geschwindigkeit v. Es gilt

$$ m = lA\rho \quad (1.2) $$

$$ = vtA\rho \quad (1.3) $$

Denn die Länge l ist Geschwindigkeit v mal Zeit t.

⁴Ersatz alter, kleiner WEA (100 kW) durch moderne, leistungsfähigere WEA (ab 1,5 MW).
Leistung P ist definitionsgemäß die Arbeit (hier: Energie) E die pro Zeiteinheit t geleistet wird:

$$P = \frac{E}{t} \quad (1.4)$$

Steigt nun die Windgeschwindigkeit, so strömt mehr Masse pro Zeiteinheit über die von den Rotorblättern begrenzte Fläche $A = \pi r^2$. Dabei bezeichnet r den Rotationsradius bzw. die Länge der Rotorblätter. Der Massenstrom steigt nach 1.3 linear zur Windgeschwindigkeit. Durch Einsetzen in obige Formeln 1.1 und 1.4 erhält man

$$P = \frac{1}{2} \pi r^2 \rho v^3$$

Die Leistung, welche durch die Windenergie erzielt wird, hängt also von der dritten Potenz der Windgeschwindigkeit ab, d.h. schon geringe Änderungen der Windgeschwindigkeit haben große Auswirkungen auf die durch den Wind erzielbare Leistungsabgabe. In Abbildung 1.5

Abbildung 1.5: Leistung in Abhängigkeit der Windgeschwindigkeit

ist die Leistungskurve des Windes für einen Rotordurchmesser von 60 m und eine Luftdichte von 1,2255 kg/m3 dargestellt. Wird der Windströmung Energie entnommen, verlangsamt sich diese. Der Massenstrom bleibt allerdings konstant, was zur Folge hat, dass der Wind sich ausweitet, da hinter der Windenergieanlage die gleiche Menge Luft bei geringerer Geschwindigkeit über eine größere Fläche abtransportiert werden muss. Würde man die komplette Windenergie in Rotationsenergie wandeln, käme es hinter der Anlage zu einem Luftstau, da dort die Luftmassen ruhen würden. Der Physiker Betz ermittelte das Maximum des Anteils der Leistung, welche dem Wind entnommen werden kann. Dieser Wert liegt bei 59,3% und wird als Betzscher Leistungsbeiwert $c_{p,Betz}$ bezeichnet.

5Dichte von trockener Luft bei normalem atmosphärischem Druck auf Meereshöhe bei 15°C; dieser Wert wird in der Windindustrie als Standard verwendet.
KAPITEL 1. EINLEITUNG

Windenergieanlagen (WEA)

In der Realität liegt der Leistungsbeiwert c_p, der Anteil der Leistung, den eine Windenergieanlage nutzen kann, je nach Anlagentyp nur bei 40% bis 50%. Der Wirkungsgrad\(^6\) einer Windenergieanlage stellt das Verhältnis von Leistungsbeiwert c_p zum Betzschen Leistungsbeiwert $c_{p,Betz}$ dar und liegt demnach zwischen 70 und 80%. Es lohnt sich also nur, die Anlage ab einer bestimmten Windgeschwindigkeit einzuschalten. Diese so genannte Anlaufgeschwindigkeit v_{start} liegt zwischen 2 und 4 m/s [32].

Eine weitere Kenngröße von Windenergieanlagen ist die Nenngeschwindigkeit v_N. Bei dieser gibt die Anlage ihre Nennleistung P_N ab. Sie liegt zwischen 11 und 16 m/s. Ab dieser Nenngeschwindigkeit wird die maximale Leistungsabgabe der Anlage erreicht; d.h. beim Überschreiten dieser Geschwindigkeit wird die Leistungsabgabe konstant gehalten, da es sonst zu Überlastungen der Anlagenkomponenten kommen kann. Der Leistungsbeiwert c_p nimmt somit ab.

Bei heutigen Windenergieanlagen wird von einer Anlagengröße von 1,5 MW bis 3 MW ausgegangen. Bei Offshore-Anlagen ist eine höhere Nennleistung denkbar. Bei zu starkem Sturm, ab einer Windgeschwindigkeit von 25-35 m/s, wird die Anlage jedoch abgeschaltet, um Schäden zu vermeiden. Im Folgenden wird die Abschaltgeschwindigkeit mit v_{stop} bezeichnet. Der Leistungsbeiwert c_p sinkt auf Null.

Eine Möglichkeit, den Leistungsbeiwert in Abhängigkeit der Windgeschwindigkeit zu berechnen, hat Quaschning in seiner Arbeit *Systemtechnik einer klimaverträglichen Elektrizitätserzeugung in Deutschland für das 21. Jahrhundert* dargestellt [27]:

\[
c_p(v) = \begin{cases}
0 & : v \leq v_{start} \\
c_{p,max} & : v_{start} < v < v_N \\
\frac{2P_N}{\rho A v^3} & : v_N \leq v \leq v_{stop} \\
0 & : v > v_{stop}
\end{cases}
\]

Die elektrische Wirkleistung P_{el} ist der Anteil der Leistung, der von einer Windenergieanlage für die Stromerzeugung genutzt werden kann. Diese ist abhängig von der im Wind enthaltenen Leistung P sowie dem Leistungsbeiwert. Sie lässt sich mit Hilfe folgender Formel bestimmen:

\[
P_{el}(v) = c_p(v)P(v)
\]

\(^6\)Der Wirkungsgrad stellt das Verhältnis von abgegebener zu zugeführter Leistung dar.
KAPITEL 1. EINLEITUNG

Leistungsbeiwert und elektrische Wirkleistung

Abbildung 1.6: Leistungsbeiwert und elektrische Wirkleistung in Abhängigkeit der Windgeschwindigkeit

In der Abbildung 1.6 sind der Leistungsbeiwert und die elektrische Wirkleistung in Abhängigkeit der Windgeschwindigkeit gegenübergestellt. Die Kurven wurden für eine Beispielanlage mit einer Nennleistung von 1,5 MW, einem Rotordurchmesser von 60 m und einer Luftdichte $\rho = 1,225\,\text{kg/m}^3$ berechnet. Anlauf-, Nenn- und Abschaltgeschwindigkeit liegen bei 2,5 m/s, 13 m/s und 25 m/s. Der maximale Leistungsbeiwert $c_{p,\text{max}}$ liegt bei dieser Anlage bei 0,44.

Für die Windanlagenindustrie ist es sehr wichtig, die regionalen Windverhältnisse zu kennen. Um die Anlage in Bezug auf Energiekosten zu optimieren, oder um die Rentabilität einer Anlage an einem bestimmten Standort zu bestimmen, werden diese Informationen benötigt. Die Windgeschwindigkeit über ein Jahr hinweg unterliegt der sog. Weibull-Verteilung

$$F_{\alpha,\beta}(v) = 1 - e^{-\alpha (\frac{v}{\bar{v}})^\beta}$$

mit der zugehörigen Dichtefunktion

$$f_{\alpha,\beta}(v) = \alpha \beta \frac{v^{\beta-1}}{\bar{v}^\beta} e^{-\alpha (\frac{v}{\bar{v}})^\beta}$$

mit den Parametern α, β und \bar{v}. Letzterer ist die mittlere Windgeschwindigkeit für den jeweiligen Standort. Die statistische Verteilung der Windgeschwindigkeit ist je nach Ort verschieden und von mehreren Faktoren abhängig, wie beispielsweise der Landschaft oder der Bodenoberfläche. Die Weibull-Verteilung ändert sich je nach Wahl der Parameter in Form und Mittelwert. Für $\alpha = \frac{\pi}{4}$ und $\beta = 2$ wird sie auch Rayleigh-Verteilung genannt.

$$f_{\frac{\pi}{2},2}(v) = \frac{\pi}{2} \cdot \frac{v}{\bar{v}^2} \cdot e^{-\frac{\pi}{4}(\frac{v}{\bar{v}})^2}$$

10
KAPITEL 1. EINLEITUNG

Abbildung 1.7: Rayleigh-Verteilung und Dichtefunktion in Abhängigkeit der Windgeschwindigkeit

Diese Verteilungs- und Dichtefunktion ist in Abbildung 1.7 für eine mittlere Windgeschwindigkeit von 7 m/s dargestellt. An der x-Achse ist jeweils die Windgeschwindigkeit angetragen und an der y-Achse die Wahrscheinlichkeit des Auftretens dieser Windgeschwindigkeit. Der Median der Verteilung liegt hier bei 6,6 m/s. Er unterteilt die Fläche in zwei gleich große Hälften, d.h. die Wahrscheinlichkeit, dass die Windgeschwindigkeit kleiner gleich 6,6 m/s ist, entspricht der Wahrscheinlichkeit, dass die Windgeschwindigkeit stärker als 6,6 m/s weht.

Der Verlauf der beiden Kurven zeigt, dass in dieser Region Stürme nur sehr selten vorkommen. Am häufigsten treten Windgeschwindigkeiten von 5,5 m/s auf. Die Wahrscheinlichkeit, dass die Windgeschwindigkeit unter 10 m/s liegt, ist 80%. Für eine Anlage mit einer Nenngeschwindigkeit von 11 m/s oder mehr würde hier in den seltensten Fällen die Nennleistung der Anlage erreicht. Man sieht, dass durch die Nennleistung einer Anlage nur geringfügige Aussagen über die tatsächliche Leistungsabgabe gemacht werden können. Hierzu benötigt man die mittlere elektrische Leistungsabgabe \bar{P}_{el} der Anlage, welche die Wahrscheinlichkeit des Auftretens einer bestimmten Windgeschwindigkeit berücksichtigt.

\[
\bar{P}_{el} = \int_{v=0}^{\infty} f(v)P_{el}(v)dv \quad (1.10)
\]

Um daraus die Energie E_{el} zu berechnen, welche von einer Windenergieanlage an diesem Standort in einem Jahr erzeugt wird, multipliziert man die mittlere Leistung mit der Anzahl Stunden im Jahr. Es ergibt sich

\[
E_{el} = \bar{P}_{el} \cdot 8760h \quad (1.11)
\]

Um die Leistung einer Windenergieanlage zu bestimmen, benötigt man die Windgeschwindigkeit auf Nabenhöhe $v(h)$. Gegebene Messwerte, welche die Windgeschwindigkeit in einer bestimmten Höhe h_{mess} wiedergeben, müssen dazu umgerechnet werden. Die Winddaten, die
für die Berechnung der Zeitreihen in Abschnitt 2.2.3 verwendet wurden, beziehen sich auf eine Höhe von 6 m. Die Umrechnung erfolgt über das logarithmische Grenzschichtprofil

\[v(h) = v(h_{mess}) \frac{\ln\left(\frac{h}{z_0} \right)}{\ln\left(\frac{h_{mess}}{z_0} \right)} \] (1.12)

Dabei beschreibt \(z_0 \) die Rauhigkeitslänge, die für Offshore-Gebiete mit 0,002, für küstennahen Gebiete mit 0,03 und für das Binnenland mit 0,1 abgeschätzt werden kann.
Kapitel 2

Die Modellierung des Kraftwerksparks und des Übertragungsnetzes

Das deutsche Energieerzeugungs- und Übertragungssystem wurde mittels eines Modells beschrieben. Unter Berücksichtigung der fluktuierenden Eigenschaften des Windes, der Stromnachfrage der Verbraucher, welche zu jeder Tages- und Nachzeit gedeckt werden muss, des Übertragungsnetzes und der verschiedenen Kraftwerke wird durch das Modell u.a. eine optimale Fahrweise des bestehenden Kraftwerksparks errechnet, sowie die nötigen Kapazitäten für die Erzeugung und den Transport bestimmt. Im folgenden Kapitel wird auf die Einzelheiten der Modellierung und die zu Grunde liegenden Daten eingegangen.

2.1 Die Struktur des Modells

KAPITEL 2. DIE MODELLIERUNG DES KRAFTWERKSPARKS UND DES ÜBERTRAGUNGSNETZES

Abbildung 2.1: Das modellierte Verbundnetz

Das Modell ist als lineares Optimierungsproblem in der Programmiersprache GAMS (General Algebraic Modelling System) formuliert. GAMS ist eine hoch entwickelte Modellierungssprache zur kompakten Repräsentation komplexer Modelle. Sie erlaubt Modellbeschreibungen, die unabhängig vom Lösungsalgorithmus sind. Als Zielfunktion wurde die Minimierung der Gesamtkosten der Energieerzeugung und Übertragung gewählt. Zu den Gesamtkosten zählen Investitionskosten, Fixkosten, variable Kosten sowie Brennstoffkosten. Die Investitionskos-
KAPITEL 2. DIE MODELLIERUNG DES KRAFTWERKSPARKS UND DES ÜBERTRAGUNGSNETZES

Abbildung 2.2: Modellierung der Knoten für drei Beispielorte

1 Visual Basic for Application

2.2 Eingabedaten

2.2.1 Kosten

<table>
<thead>
<tr>
<th>Kraftwerk</th>
<th>(K_{\text{Inv}}) [Euro/kW]</th>
<th>(K_{\text{Fix}}) [Euro/kW]</th>
<th>(K_{\text{Var}}) [Euro ct/kWh]</th>
<th>(K_{\text{Bren}}) [Euro ct/kWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steinkohlekraftwerk</td>
<td>1036</td>
<td>40</td>
<td>0,77</td>
<td>0,5</td>
</tr>
<tr>
<td>Braunkohlekraftwerk</td>
<td>1150</td>
<td>47</td>
<td>0,99</td>
<td>0,45</td>
</tr>
<tr>
<td>Gasturbine</td>
<td>229</td>
<td>13</td>
<td>0,00</td>
<td>0,9</td>
</tr>
<tr>
<td>GuD</td>
<td>405</td>
<td>16</td>
<td>0,40</td>
<td>0,9</td>
</tr>
<tr>
<td>Kernkraftwerk</td>
<td>1500</td>
<td>40</td>
<td>0,99</td>
<td>0,3</td>
</tr>
<tr>
<td>Laufwasserkraftwerk</td>
<td>4500</td>
<td>41</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>WEA Onshore</td>
<td>675</td>
<td>34</td>
<td>0,36</td>
<td>0,00</td>
</tr>
<tr>
<td>WEA Offshore</td>
<td>793</td>
<td>40</td>
<td>0,47</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Tabelle 2.1: Spezifische Kosten der Stromerzeugung für das Jahr 2030

Der Abschreibungszeitraum wurde für GuD, Gasturbinen, Steinkohle-, Braunkohle- und Kernkraftwerke auf 17 Jahre festgelegt, für Laufwasserkraftwerke auf 30 und für Windenergieanlagen auf 15 Jahre.

Bei den hier angegebenen Kosten sind alle Aufwendungen für die Erzeugung einer Kilowattstunde enthalten. Für die Modellierung wurden die Investitionskosten mit Hilfe der Annuitätenrechnung auf ein Jahr umgelegt, so dass sich alle Kosten in dem Modell auf ein Jahr beziehen.

Die Annuität \(A \) lässt sich nach folgender Formel berechnen:

\[
A = \frac{K_{\text{Inv}} (1 + r)^T r}{(1 + r)^T - 1}
\]

(2.1)

Die benötigten Parameter sind im Folgenden aufgelistet:

<table>
<thead>
<tr>
<th>Bezeichner</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{\text{Inv}})</td>
<td>Investitionskosten/Kapital</td>
</tr>
<tr>
<td>(r)</td>
<td>Kalkulationszinssatz</td>
</tr>
<tr>
<td>(T)</td>
<td>Abschreibungszeitraum/Nutzungsdauer</td>
</tr>
</tbody>
</table>

17
2.2.2 Nachfrage

Die großen Stromversorger der meisten westeuropäischen Länder haben sich zu einem gemeinsamen Verbundnetz, der UCTE (Union für die Koordination des Transportes elektrischer Energie), zusammengeschlossen, um die Versorgungssicherheit mit Strom besser zu gewährleisten und zu vereinfachen. Derzeit hat die UCTE 20 Mitgliedstaaten [15].

Die Verbraucherlasten liegen in Form einer Zeitreihe vor und wurden einen detaillierten UCTE-Datensatz der Universität Rostock entnommen. Die Verbraucherlasten wurden zusammengefasst und den einzelnen Knoten des Modells zugeordnet [17].

Abbildung 2.4: Typischer Lastgang für eine Woche im Sommer im Vergleich zum Winter
2.2.3 Wind

KAPITEL 2. DIE MODELLIERUNG DES KRAFTWERKSPARKS UND DES ÜBERTRAGUNGSNETZES

Abbildung 2.6: Windangebot einer Woche im Winter für Nord- und Süd Deutschland

Abbildung 2.7: Windangebot versus Stromnachfrage einer Woche im Winter für Nord- und Süd Deutschland

2.2.4 Übertragungsnetz

KAPITEL 2. DIE MODELLIERUNG DES KRAFTWERKSPARKS UND DES ÜBERTRAGUNGSNETZES

land mit den umliegenden Mitgliedstaaten, und 13 Leitungen verbinden die Mitgliedstaaten untereinander.

Abbildung 2.8: Transportkapazitäten

<table>
<thead>
<tr>
<th>Leitung</th>
<th>Leistung (MVA)</th>
<th>Wirkungsgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlin Cottbus</td>
<td>3547</td>
<td>0.976</td>
</tr>
<tr>
<td>Berlin Großwasl</td>
<td>2063</td>
<td>0.979</td>
</tr>
<tr>
<td>Berlin Magdeburg</td>
<td>2840</td>
<td>0.959</td>
</tr>
<tr>
<td>Bielefeld Bremen</td>
<td>826</td>
<td>0.961</td>
</tr>
<tr>
<td>Bielefeld Hamburg</td>
<td>3532</td>
<td>0.983</td>
</tr>
<tr>
<td>Bielefeld Hannover</td>
<td>2850</td>
<td>0.964</td>
</tr>
<tr>
<td>Bielefeld Kassel</td>
<td>1580</td>
<td>0.969</td>
</tr>
<tr>
<td>Bielefeld München</td>
<td>1269</td>
<td>0.976</td>
</tr>
<tr>
<td>Bodensee Stuttgart</td>
<td>987</td>
<td>0.971</td>
</tr>
<tr>
<td>Bodensee Ulm</td>
<td>1828</td>
<td>0.97</td>
</tr>
<tr>
<td>Bodensee Tirol</td>
<td>3006</td>
<td>0.99</td>
</tr>
<tr>
<td>Bremen Hamburg</td>
<td>3540</td>
<td>0.971</td>
</tr>
<tr>
<td>Bremen Münster</td>
<td>957</td>
<td>0.966</td>
</tr>
<tr>
<td>Bremen Nennet</td>
<td>2526</td>
<td>0.977</td>
</tr>
<tr>
<td>Chemnitz Cottbus</td>
<td>4405</td>
<td>0.962</td>
</tr>
<tr>
<td>Chemnitz Dresden</td>
<td>5264</td>
<td>0.965</td>
</tr>
<tr>
<td>Chemnitz Erfurt</td>
<td>2007</td>
<td>0.964</td>
</tr>
<tr>
<td>Chemnitz Leipzig</td>
<td>9563</td>
<td>0.971</td>
</tr>
<tr>
<td>Chemnitz Cops</td>
<td>2553</td>
<td>0.99</td>
</tr>
<tr>
<td>Cottbus Dresden</td>
<td>2552</td>
<td>0.964</td>
</tr>
<tr>
<td>Cottbus Leipzig</td>
<td>2525</td>
<td>0.973</td>
</tr>
<tr>
<td>Cottbus Magdeburg</td>
<td>2653</td>
<td>0.977</td>
</tr>
<tr>
<td>Dresden Pilsen</td>
<td>2650</td>
<td>0.991</td>
</tr>
<tr>
<td>Erfurt Kassel</td>
<td>2546</td>
<td>0.972</td>
</tr>
<tr>
<td>Erfurt Leipzig</td>
<td>3987</td>
<td>0.974</td>
</tr>
<tr>
<td>Erfurt Nürnberg</td>
<td>3140</td>
<td>0.979</td>
</tr>
<tr>
<td>Essen Kassel</td>
<td>1974</td>
<td>0.964</td>
</tr>
<tr>
<td>Essen Kieur</td>
<td>3973</td>
<td>0.978</td>
</tr>
<tr>
<td>Essen Münster</td>
<td>3577</td>
<td>0.90</td>
</tr>
<tr>
<td>Frankfurt Kassel</td>
<td>4739</td>
<td>0.965</td>
</tr>
<tr>
<td>Frankfurt Kieur</td>
<td>907</td>
<td>0.991</td>
</tr>
<tr>
<td>Frankfurt Mainz</td>
<td>1794</td>
<td>0.993</td>
</tr>
<tr>
<td>Frankfurt Nürnberg</td>
<td>2535</td>
<td>0.977</td>
</tr>
<tr>
<td>Freiberg Karlsruhe</td>
<td>5422</td>
<td>0.979</td>
</tr>
<tr>
<td>Freiberg Stuttgart</td>
<td>686</td>
<td>0.998</td>
</tr>
<tr>
<td>Freiberg Egl</td>
<td>4050</td>
<td>0.999</td>
</tr>
<tr>
<td>Freiberg Edl</td>
<td>1793</td>
<td>0.999</td>
</tr>
<tr>
<td>Greifswald Magdeburg</td>
<td>1543</td>
<td>0.974</td>
</tr>
<tr>
<td>Greifswald Rostock</td>
<td>2540</td>
<td>0.973</td>
</tr>
<tr>
<td>Greifswald Pilsen</td>
<td>324</td>
<td>0.961</td>
</tr>
<tr>
<td>Hamburg Hannover</td>
<td>3160</td>
<td>0.976</td>
</tr>
<tr>
<td>Hamburg Kiel</td>
<td>2244</td>
<td>0.99</td>
</tr>
<tr>
<td>Hamburg Kraftmeier</td>
<td>600</td>
<td>0.95</td>
</tr>
<tr>
<td>Hamburg Rostock</td>
<td>2533</td>
<td>0.94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leitung</th>
<th>Leistung (MVA)</th>
<th>Wirkungsgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hannover Kassel</td>
<td>2449</td>
<td>0.979</td>
</tr>
<tr>
<td>Hannover Magdeburg</td>
<td>2885</td>
<td>0.985</td>
</tr>
<tr>
<td>Karlsruhe Mainz</td>
<td>201</td>
<td>0.962</td>
</tr>
<tr>
<td>Karlsruhe Nuernberg</td>
<td>1627</td>
<td>0.965</td>
</tr>
<tr>
<td>Karlsruhe Saarbrücken</td>
<td>907</td>
<td>0.983</td>
</tr>
<tr>
<td>Karlsruhe Stuttgart</td>
<td>3744</td>
<td>0.985</td>
</tr>
<tr>
<td>Karlsruhe Stuttgart</td>
<td>2040</td>
<td>0.964</td>
</tr>
<tr>
<td>Koln Mainz</td>
<td>2590</td>
<td>0.976</td>
</tr>
<tr>
<td>Koln Saarbrücken</td>
<td>2056</td>
<td>0.971</td>
</tr>
<tr>
<td>Koln Tetten</td>
<td>3340</td>
<td>0.96</td>
</tr>
<tr>
<td>Leipzig Magdeburg</td>
<td>2659</td>
<td>0.982</td>
</tr>
<tr>
<td>Magdeburg Rastock</td>
<td>2029</td>
<td>0.956</td>
</tr>
<tr>
<td>Mainz Nuernberg</td>
<td>264</td>
<td>0.984</td>
</tr>
<tr>
<td>Mainz Saarbrücken</td>
<td>1650</td>
<td>0.976</td>
</tr>
<tr>
<td>Mainz Stuttgart</td>
<td>2638</td>
<td>0.985</td>
</tr>
<tr>
<td>Mannheim Nuernberg</td>
<td>2714</td>
<td>0.964</td>
</tr>
<tr>
<td>Mannheim Regensburg</td>
<td>2758</td>
<td>0.965</td>
</tr>
<tr>
<td>Mannheim Trier</td>
<td>2133</td>
<td>0.98</td>
</tr>
<tr>
<td>Mannheim Teltel</td>
<td>2840</td>
<td>0.997</td>
</tr>
<tr>
<td>Nuernberg Regensburg</td>
<td>2367</td>
<td>0.964</td>
</tr>
<tr>
<td>Nuernberg Stuttgart</td>
<td>1116</td>
<td>0.982</td>
</tr>
<tr>
<td>Regensburg Agg</td>
<td>1515</td>
<td>0.975</td>
</tr>
<tr>
<td>Regensburg Cops</td>
<td>2580</td>
<td>0.981</td>
</tr>
<tr>
<td>Rostock Elkrift</td>
<td>800</td>
<td>0.95</td>
</tr>
<tr>
<td>Rostock Saarbrücken</td>
<td>3850</td>
<td>0.961</td>
</tr>
<tr>
<td>Stuttgart Ulm</td>
<td>3391</td>
<td>0.98</td>
</tr>
<tr>
<td>Ulm Trier</td>
<td>1881</td>
<td>0.985</td>
</tr>
<tr>
<td>Egl Edl</td>
<td>2473</td>
<td>0.969</td>
</tr>
<tr>
<td>PSE CEPS</td>
<td>0</td>
<td>0.99</td>
</tr>
<tr>
<td>PSE SOE</td>
<td>2770</td>
<td>0.999</td>
</tr>
<tr>
<td>CEPS SOE</td>
<td>2215</td>
<td>0.999</td>
</tr>
<tr>
<td>CEPS APQ</td>
<td>2300</td>
<td>0.94</td>
</tr>
<tr>
<td>APQ TIRCOL</td>
<td>1185</td>
<td>0.95</td>
</tr>
<tr>
<td>BÖDENSEE EGL</td>
<td>3180</td>
<td>0.98</td>
</tr>
<tr>
<td>TENNES ELIA</td>
<td>5400</td>
<td>0.94</td>
</tr>
<tr>
<td>ELIA EDL</td>
<td>2795</td>
<td>0.98</td>
</tr>
<tr>
<td>ELIA SOE</td>
<td>3373</td>
<td>0.999</td>
</tr>
<tr>
<td>ENEL SOE</td>
<td>2840</td>
<td>0.999</td>
</tr>
<tr>
<td>ENEL EDF</td>
<td>3510</td>
<td>0.999</td>
</tr>
<tr>
<td>ENEL EGL</td>
<td>1660</td>
<td>0.999</td>
</tr>
<tr>
<td>ENEL BÖDENSEE EGL</td>
<td>1510</td>
<td>0.999</td>
</tr>
</tbody>
</table>

2.2.5 Kraftwerke

Die Kraftwerke im detaillierten UCTE-Netz wurden für jede Umgebung eines Ersatzknotens nach Energieträgern und Wirkungsweise zusammengefasst und dem entsprechendem Knoten im Modell zugeordnet. Die Kraftwerke unterscheiden sich durch technische Parameter und

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Kraftwerk} & \text{Wirkungsgrad} & \text{Abschreibungszeitraum [a]} & \text{PC} \\
\hline
\text{Steinkohlekraftwerk} & 0,45 & 17 & 0,2 \\
\text{Braunkohlekraftwerk} & 0,45 & 17 & 1 \\
\text{Gasturbine} & 0,35 & 17 & 1 \\
\text{GuD} & 0,58 & 17 & 0,2 \\
\text{Kernkraftwerk} & 0,35 & 17 & 1 \\
\text{Laufwasserkraftwerk} & 0,5 & 30 & 1 \\
\text{WEA Onshore} & 1 & 15 & 1 \\
\text{WEA Offshore} & 1 & 15 & 1 \\
\hline
\end{array}
\]

Tabelle 2.2: Technische Parameter der einzelnen Kraftwerke

2.3 Modellierung

Die in diesem Kapitel vorgestellten Konzepte wurden als ein mathematisches Modell in Form eines linearen Optimierungsproblems formuliert. Die Eingabedaten werden in Form von Variablen, Gleichungen und Ungleichungen in die lineare Programmierung eingebunden. In folgendem Kapitel wird auf die Theorie linearer Optimierungsprobleme eingegangen und einige Algorithmen und Verfahren vorgestellt, die zum Lösen des Modells verwendet wurden.
Kapitel 3

Lineare Optimierungsprobleme und deren Lösungsalgorithmen

In der Wirtschaft findet man viele Probleme, die als lineare Optimierungsprobleme formuliert werden können. Dazu gehören beispielsweise die Minimierung von Produktionskosten, Fahrzeitminimierung bei der Auslieferung von Produkten oder die Berechnung der maximalen Auslastung von Maschinenlaufzeiten. Die lineare Optimierung stellt demnach ein bedeutendes Feld der Optimierung dar.

Aus geometrischer Sicht beschreibt jede lineare Gleichung mit den Variablen x_1, \ldots, x_n eine Hyperebene im n-dimensionalen Bildraum, eine lineare Ungleichung einen Halbraum, in dem alle Punkte auf einer Seite der Hyperebene liegen. Dieser Halbraum stellt die Menge aller zulässigen Lösungen für diese Ungleichung dar.

Mehrere Restriktionen definieren durch den Schnitt aller zugeordneten Halbräume den Zulässigkeitsbereich, der einen konvexen Polyeder bildet. Es besteht allerdings auch die Möglichkeit, dass dieser Bereich aufgrund zweier sich widersprechender Restriktionen leer ist (Beispielsweise $x \geq 2$ und $x \leq 1$). Das Problem ist also nicht lösbar. Ist der Polyeder in Richtung der Zielfunktion unbeschränkt, so existiert ebenso keine optimale Lösung (Beispiel: max $x_1 + 3x_2$ unter $x_1 + x_2 \geq 10$ und $x_i \geq 0$ für $i = 1, 2$).

Gibt es jedoch ein Optimum, ist dieses am Rand des Zulässigkeitsbereichs in einer Ecke bzw. Schnittmenge zu finden. Eine Ecke eines Polyeders ist ein Punkt, in dem sich n linear unabhängige Ungleichungen schneiden, dabei ist n die Anzahl der Variablen. Im 2-dimensionalen Raum ist eine Schnittmenge eine Kante. Das Optimum ist eine Kante, wenn der Zielfunktionswert in zwei benachbarten Ecken gleich ist, d.h. die Zielfunktion ist parallel zu der Restriktion, welche diese beiden Ecken verbindet, und damit ist jeder Punkt auf dieser Strecke
ein Optimum. Da es sich im linearen Fall um eine lineare Zielfunktion handelt, ist jedes lokale Optimum auch ein globales.

Variablen: E_{in}, E_{out}, E_{CO_2}, C, C_{neu}.

Dabei steht E_{in} für Energie, die in einen Prozess, die Speicherung bzw. den Transport hinein fließt und E_{out} für Energie, die aus dem Prozess, der Speicherung oder dem Transport heraus fließt. E_{CO_2} ist die CO_2-Emission. C steht für Kapazität. C ist die Gesamtkapazität und C_{neu}, die neu errichtete Kapazität. I ist die Menge aller Installationen, dazu gehören die Energieerzeugung je Ort, Zeit und Kraftwerk, die Speicherung je Ort und Zeit sowie der Transport von Ort zu Ort je Zeit. T ist die Menge der Zeitschritte. K_{inv}, K_{fix} und K_{var} sind Investitionskosten, Fixkosten und variable Kosten der Installation i.

Zielfunktion

$$\min \sum_i K_{inv} C_{neu} + \sum_i K_{fix} C_i + \sum_{i,t} K_{var} E_{in,i,t} \quad (3.1)$$

Nebenbedingungen

Durch die Energieumwandlung (Prozess), die Speicherung oder den Transport entstehen Verluste. Mit Hilfe des Wirkungsgrades η wird die erhaltene Energie bestimmt:

$$E_{in,i,t} \eta = E_{out,i,t} \quad \forall i \in I \quad \text{und} \quad t \in T \quad (3.2)$$

Die Nachfrage d, mit $d \geq 0$, muss zu jedem Zeitpunkt t gedeckt werden:

$$\sum_{i,t} (E_{out,i,t} - E_{in,i,t}) \geq d_t \quad (3.3)$$

Die Energieerzeugung, Speicherung und der Transport unterliegen gewissen Kapazitätsschranken:

$$E_{in,i,t} \leq C_i \quad \forall i \in I \quad \text{und} \quad t \in T \quad (3.4)$$

Die Kapazität C einer Installation i errechnet sich aus bereits installierter $instC$ plus neuer Kapazität C_{neu}:

$$C_i = C_{neu} + instC \quad \forall i \in I \quad (3.5)$$

Begrenzung der CO_2-Emission:

$$\sum_{i,t} E_{CO_2,i,t} \leq up \quad \text{für} \quad i \in I, t \in T \quad (3.6)$$
KAPITEL 3. LINEARE OPTIMIERUNGSPROBLEME UND DEREN LÖSUNGSALGORITHMEN

Laständerung eines Kraftwerks von einen auf den nächsten Zeitpunkt. Der Laständerungsko-
effizient wird mit PC bezeichnet:

$$-C \cdot PC \leq E_{out,t} - E_{out,t-1} \leq C \cdot PC \quad \text{für } i \in I, t \in T$$ (3.7)

Die Variablen können sowohl nach oben als auch nach unten beschränkt werden:

$$lo_i \leq C_i \leq up_i \quad \text{für alle } i \in I \quad (3.8)$$

$$lo_i \leq E_{ini,i} \leq up_i \quad \text{für } i \in I \quad (3.9)$$

3.1 Der Simplex-Algorithmus

Man startet an einer beliebigen zulässigen Ecke, sucht von dort eine Verbesserung bezüglich des Zielfunktionswertes und geht soweit in die Richtung der Verbesserung, bis die nächste Ecke des Zulässigkeitsbereich erreicht wird. Von dort aus wiederholt sich das Verfahren, bis keine Verbesserung mehr möglich ist. Die Ecken des Polyeders heißen Basisslösungen des linearen Ungleichungssystems. Der Teilvektor der Variablen, welcher die Basisslösung bildet, wird aus den Basisvariablen zusammengesetzt. Die restlichen Variablen nennt man Nicht-

Basissvariablen. Ein Wandern von Ecke zu Ecke ist gleichbedeutend mit einem Basiswechsel. Eine Ecke entsteht, wie schon erwähnt, als Schmitt von sich schneidenden Hyperebenen. Für die Restriktionen, die zu diesen Hyperebenen gehören, gilt im Falle von Ungleichungen Gleich-
heit. Man nennt sie die straffen Restriktionen.

3.1.1 Das lineare Problem in allgemeiner Form

Das Standard-Problem lässt sich folgendermaßen beschreiben:

$$\begin{align*}
\min & \quad c^T x \\
\text{unter} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}$$ (3.10)

(3.11)

(3.12)

Dabei ist $A \in \mathbb{R}^{m \times n}$, $m \leq n$ mit $\text{Rang}(A) = m$, b ist m-dimensionaler Vektor, c ist n-
dimensionaler Vektor, x ist n-dimensionaler Variablenvektor.

Um das Verfahren des Simplex-Algorithmus herzuleiten, wird obiges Minimierungsproblem umgeschrieben. Für die Bezeichnung des Zielfunktionswertes wird der Variablenname z eingeführt:

$$z - c^T x = 0$$ \hspace{1cm} (3.13)
$$unter \quad Ax = b$$ \hspace{1cm} (3.14)
$$x \geq 0$$ \hspace{1cm} (3.15)

Im Folgenden bezeichnet B die Indexmenge der Basisvariablen\footnote{Im Folgenden wird zur Vereinfachung der Schreibweise die Indexmenge der Basisvariablen kurz mit Basis B bezeichnet.}. Die Spalten von A, welche in B enthalten sind, sind linear unabhängig. Die Submatrix A_B bezeichnet damit die Basismatrix. x_i, $i \in B$ bezeichnet die i-te Basisvariablen mit $x_B = [x_{B_1}, \ldots, x_{B_n}]$. Die Indexmenge der Nicht-Basisvariablen wird mit N bezeichnet, die Nicht-Basisvariablen demnach mit x_N und die Nicht-Basismatrix mit A_N. Es gilt $A_N \in \mathbb{R}^{m \times (n-m)}$ und x_N ist $(n-m)$-Vektor.

Sei eine Basis B gegeben, dann kann die Gleichung $Ax = b$ geschrieben werden als $A_B x_B + A_N x_N = b$. Multipliziert man diese Gleichung mit A_B^{-1}, erhält man $x_B + A_B^{-1} A_N x_N = A^{-1}_B b$. Damit ist $[x_B, x_N] = [A_B^{-1} b, 0]$ eine Basislösung für B. Ist x_B nicht-negativ, so ist $x_B = A_B^{-1} b, x_N = 0$ eine zulässige Basislösung.

Obiges lineares Programm (LP) ist äquivalent zu

$$z - [c_B^T, c_N^T] \begin{bmatrix} x_B \\ x_N \end{bmatrix} = 0$$ \hspace{1cm} (3.16)
$$unter \quad x_B + A_B^{-1} A_N x_N = A_B^{-1} b$$ \hspace{1cm} (3.17)
$$x_B, x_N \geq 0$$ \hspace{1cm} (3.18)

Ersetzt man $x_B = A_B^{-1} b - A_B^{-1} A_N x_N$ in 3.16 und 3.18, so erhält man:

$$z - [c_B^T, c_N^T] \begin{bmatrix} A_B^{-1} b - A_B^{-1} A_N x_N \\ x_N \end{bmatrix} = 0$$
$$\Leftrightarrow z - c_B^T A_B^{-1} b + c_N^T A_B^{-1} A_N x_N - c_N^T x_N = 0$$
$$\Leftrightarrow z - c_N^T x_N + c_B^T A_B^{-1} A_N x_N = c_B^T A_B^{-1} b$$
$$\Leftrightarrow z - [c_B^T + c_B^T A_B^{-1} A_N] x_N = c_B^T A_B^{-1} b$$
$$\Leftrightarrow z - \bar{w}_N^T x_N = c_B^T A_B^{-1} b$$ \hspace{1cm} (3.19)
$$unter \quad A_B^{-1} A_N x_N \leq A_B^{-1} b$$ \hspace{1cm} (3.20)
$$x_N \geq 0$$ \hspace{1cm} (3.21)
Dabei ist \(\bar{w}_N := c_N^T - c_B^T A_N^{-1} A_N \) und wird reduzierte Kosten genannt. Diese Variablen enthalten wichtige Informationen über die Basislösung. Sei \(\bar{x}_B = A_B^{-1} b, \bar{x}_N = 0 \) mit zugehörigem Zielfunktionswert \(c_B^T A_N^{-1} b \). Um zu entscheiden, ob diese Lösung noch verbessert werden kann, sehen wir uns den Zielfunktionswert 3.19 an. Diese Gleichung impliziert, dass im Falle der Existenz eines \(\bar{w}_q \) für ein \(q \in N, \bar{w}_q \) um \(\bar{w}_q \) gesenkt wird, für jede Einheit, um die \(x_q \) vom aktuellen Wert Null erhöht wird. Um wie viel \(x_q \) erhöht werden kann, damit 3.20 nicht verletzt wird, bestimmt man durch den Minimum-Ratio-Test:

\[
\alpha_P := \frac{\bar{x}_B}{\bar{y}_q} := \min \{ \frac{\bar{x}_B}{\bar{y}_q} | \bar{y}_q > 0, i = 1, \ldots, m \}
\]

(3.22)

Hier ist \(\bar{y}_q \) das Element in Zeile i und Spalte q der transformierten Nicht-Basismatrix \(A_B^{-1} A_N \), und \(\bar{y}_q \) bezeichnet die Spalte q. Der Wert \(\alpha_P \) gibt an, um wie viel die Variable \(x_q \) erhöht werden kann. Der Zielfunktionswert \(c_B^T A_N^{-1} b \) wird dementsprechend zu \(c_B^T A_N^{-1} b + \alpha_P \bar{w}_q \) reduziert. Existiert kein \(i, \bar{y}_q > 0 \), so ist das Problem unbeschränkt. Im Folgenden sei \(\bar{w}_j = c_j - z_j \) mit \(z_j := c_B^T A_B^{-1} a_j := w_j y_j \in N, a_j \) hier die Spalte j der Matrix A.

Satz 3.1 Sei \(B \) Basis. Ist die Basislösung \((\bar{x}_B, \bar{x}_N) \) zulässig und \(\bar{w}_N \geq 0 \), dann ist die Lösung eine Optimallösung. Existiert ein \(q \in N \), so dass \(\bar{w}_q < 0 \) und \(\bar{y}_q \leq 0 \), dann ist \((LP) \) unbeschränkt.

Beweis 1 Ist \((\bar{x}_B, \bar{x}_N) \) eine zulässige Lösung, dann gilt \(\bar{x}_B \geq 0 \) und \(\bar{x}_N = 0 \). Sei \(\bar{z}_0 = c_B^T A_B^{-1} b - \bar{w}_N^T \bar{x}_N \) der zugehörige Zielfunktionswert. Da es sich hier um ein Minimierungsproblem handelt und \(\bar{w}_N \geq 0 \), wird durch eine Erhöhung der Variablen \(\bar{x}_N \) der Zielfunktionswert erhöht. Es gilt \(\bar{z} = c_B^T A_B^{-1} b - \bar{w}_N^T \bar{x}_N \leq c_B^T A_B^{-1} b - \bar{w}_N^T x_N = z \). Damit ist der aktuelle Zielfunktionswert optimal. Der zweite Teil des Satzes folgt aus der Tatsache, dass durch \(\bar{w}_q < 0 \) und \(\bar{y}_q \leq 0 \) die Unbeschränktheit des Problems impliziert wird.

Die Vorgehensweise der Simplex-Methode wird im Folgenden zusammengefasst als Algorithmus formuliert dargestellt.

Der Primale Simplex-Algorithmus

Initialisierung

Wählen beliebige zulässige Startlösung \([x_B, x_N]\) mit Basis \(B \). Es gilt \(A = A_B A_N \), \(A_B \) ist Basismatrix und \(\text{Rang}(A_B) = \text{Rang}(A) = m \) und \(A_N \) ist Nicht-Basismatrix, \(N \) ist Indexmenge der Nicht-Basisvariablen

Hauptschritte

Seien \(x_B \) die Basisvariablen zur Basis \(B \), \(x_N \) die Nicht-Basisvariablen, und \(z \) bezeichnen den Zielfunktionswert
1. Löse \(A_B x_B = b \), dadurch ergeben sich die eindeutigen Lösungen \(x_B = A_B^{-1} b = \bar{b} \),
 \(x_B = \bar{b}, x_N = 0 \), \(z = c_B^T x_B \)
2. Löse \(w A_B = c_B \), dadurch ergeben sich die eindeutigen Lösungen \(w = A_B^{-1} c_B \)
 • berechne \(z_j - c_j = w a_j - c_j \forall j \in N \)
 • \(z_q - c_q = \max_j (z_j - c_j) \)
 • wenn \(z_q - c_q = -\bar{w}_q \leq 0 \) dann
 − STOP \(\implies \) Optimallösung
 • Variable \(x_q \) wird in Basis aufgenommen;
3. Löse \(A_B \bar{y}_q = a_q \), dadurch ergeben sich die eindeutigen Lösungen \(y_q = A_B^{-1} a_q \)
 • wenn \(y_q \leq 0 \)
 − STOP \(\implies \) Lösung unbeschränkt entlang des Strahls
 \(\{(\bar{b}) + x_q(-y_q) e_q : x_q \geq 0\} \)
4. Bestimme blockierende Variable, die Basis verlässt mit Hilfe des Minimum-Ratio-Test:
 \[\alpha_P = \frac{\bar{b}_r}{\bar{y}_{rq}} = \min_i \{ \frac{\bar{b}_i}{\bar{y}_{iq}} : \bar{y}_{iq} > 0, i = 1, \ldots, m \} \] \((3.23) \)
 \(r = \) Index der blockierenden Variablen \(\implies \) Vektor \(a_q \) ersetzt Vektor \(a_B \) in
 der Basis
 Gehe zu 1.

Die Berechnung der reduzierten Kosten in Schritt 2 des Algorithmus nennt man Pricing. Die
Regel für die Auswahl der maximalen negativen reduzierten Kosten wird als Dantzig-Regel
bezeichnet.

Beispiel

\[
\begin{align*}
\min & \quad -x_1 - 3x_2 \\
\text{unter} & \quad 2x_1 + 3x_2 \leq 6 \\
& \quad -x_1 + x_2 \leq 1 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

Durch Einführen der Schlupfvariablen \(x_3 \) und \(x_4 \) ergibt sich

\[
\begin{align*}
\min & \quad -x_1 - 3x_2 \\
\text{unter} & \quad 2x_1 + 3x_2 + x_3 = 6 \\
& \quad -x_1 + x_2 + x_4 = 1 \\
& \quad x_1, x_2, x_3, x_4 \geq 0
\end{align*}
\]
Initialisierung
Sei $B=3,4$ und $N=1,2$ damit ist $A_B = (a_3, a_4) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ und $A_N = (a_1, a_2) = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}$

Hauptschritte
1. Iteration

$$1. \quad x_B = A_B^{-1}b = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 1 \end{pmatrix} = \bar{b},$$

$$x_N = \begin{pmatrix} x_{N_1} \\ x_{N_2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$z = c_B^T x_B = (0,0) \begin{pmatrix} 6 \\ 1 \end{pmatrix} = 0$$

2. $$w^T = c_B^T A_B^{-1} = (0,0) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (0,0),$$

$$z_j - c_j = w_j - x_j \quad \text{für} \quad j = 1,2$$

$$z_1 - c_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} + 1 = 1,$$

$$z_2 - c_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} + 3 = 3$$

$$\Rightarrow \quad max_j(z_j - c_j) = 3 > 0 \quad \text{für} \quad j = 2 \Rightarrow x_q = x_2 \quad \text{ist Variable, die in Basis aufgenommen wird}$$

3. $$\bar{y}_q = \bar{y}_2 = A_B^{-1} a_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$\Rightarrow \quad \bar{y}_2 > 0 \Rightarrow \text{Gehe zu } 4.$$

4. $$\min \frac{b_{ij}}{y_{ij}}: \bar{y}_{i2} > 0 = \min \frac{6}{3} = 2, \frac{1}{1} = 1 = 1$$

$$\Rightarrow 2.\text{ter Basisvektor } a_{B_2} = a_4 \text{ verlässt die Basis.}$$

$B = \{3,2\}$ und $N = \{1,4\}$ damit ist $A_B = (a_3, a_2) = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$ und $A_N = (a_1, a_4) =$
(2 0
-1 1)

2. Iteration

1. \(x_B = A_B^{-1}b = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} x_3 \\ x_2 \end{pmatrix} = b, \)

\(x_N = \begin{pmatrix} x_{N_1} \\ x_{N_2} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \)

\(z = c_B^T x_B = (0, -3) \begin{pmatrix} 3 \\ 1 \end{pmatrix} = -3 \)

2. \(w^T = c_B^T A_B^{-1} = (0, -3) \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} = (0, -3), \)

\(z_j - c_j = w_{aj} - c_j \) für \(j = 1, 4 \)

\(z_1 - c_1 = \begin{pmatrix} 0 \\ -3 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} + 1 = 4, \)

\(z_4 - c_4 = \begin{pmatrix} 0 \\ -3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 0 = -3 \)

\(\Rightarrow \max_j (z_j - c_j) = 4 > 0 \) für \(j = 1 \) \(\Rightarrow x_q = x_1 \) ist Variable, die in Basis aufgenommen wird

3. \(\bar{y}_q = \bar{y}_1 = A_B^{-1} a_1 = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}, \)

\(\Rightarrow \bar{y}_1 \not\leq 0 \Rightarrow \text{Gehe zu 4.} \)

4. \(r=1 \Rightarrow 1.\text{ter Basisvektor} \ a_{B_1} = a_3 \text{ verlässt die Basis.} \)

\(B = \{1, 2\} \text{ und } N = \{3, 4\} \) damit ist \(A_B = (a_1, a_2) = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix} \) und \(A_N = (a_3, a_4) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)

3. Iteration

30
KAPITEL 3. LINEARE OPTIMIERUNGSPROBLEME UND DEREN LÖSUNGSALGORITHMEN

1. \(x_B = A_B^{-1}b = \begin{pmatrix} 1/5 & -3/5 \\ 1/5 & 2/5 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 7/5 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \bar{b}, \)

\(x_N = \begin{pmatrix} x_{N1} \\ x_{N2} \end{pmatrix} = \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \)

\(z = c_B^T x_B = (-1, -3) \begin{pmatrix} 3/5 \\ 7/5 \end{pmatrix} = -5 \)

2. \(w^T = c_B^T A_B^{-1} = (-1, -3) \begin{pmatrix} 1/5 & -3/5 \\ 1/5 & 2/5 \end{pmatrix} = \begin{pmatrix} -4/5 & -3/5 \end{pmatrix}, \)

\(z_j - c_j = w a_j - c_j \quad \text{für} \quad j = 3, 4 \)

\(z_3 - c_3 = \begin{pmatrix} -4/5 \\ -3/5 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 = -4/5, \)

\(z_4 - c_4 = \begin{pmatrix} -4/5 \\ -3/5 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 0 = -3/5 \)

\(\Rightarrow \max_j (z_j - c_j) = -3/5 \leq 0 \quad \text{für} \quad j = 4 \Rightarrow \text{STOP Optimallösung erreicht mit} \)

\(x_{opt} = (3/5, 7/5, 0, 0)^T \quad \text{und} \quad z_{opt} = -5 \)

3.1.2 Der Simplex-Algorithmus mit beschränkten Variablen

In der Praxis sind die Variablen der meisten Probleme nach oben und unten beschränkt. Solch ein Problem kann wie folgt dargestellt werden:

\[
\begin{align*}
\min & \quad cx \\
\text{unter} & \quad Ax = b \\
& \quad l \leq x \leq u
\end{align*}
\]

\(A \in \mathbb{R}^{m \times n}, \text{Rang}(A) = m, b \in \mathbb{R}^{m \times 1}, l \text{ untere Schranke (lower bound)}, u \text{ obere Schranke (upper bound)} \). Sei nun B die Indexmenge der Basisvektoren, dann gilt Basismatrix \(A_B \) ist quadratisch mit \(\text{Rang}(A_B) = \text{Rang}(A) = m, A = (A_B, A_{N_1}, A_{N_2}) \), wobei \(A_{N_1} \) der Vektor der Nicht-Basisvariablen ist, welche die untere Schranke erreicht haben. Diese werden im Folgenden mit \(\bar{x}_{N_1} \) bezeichnet. \(A_{N_2} \) ist der Vektor der Nicht-Basisvariablen, welche die obere Schranke erreicht haben. Diese Variablen werden mit \(\bar{x}_{N_2} \) bezeichnet. In der Basis befinden sich diejenigen Variablen, die zwischen der oberen und unteren Schranke liegen. Die Basisvariablen werden mit \(\bar{x}_B \) bezeichnet. Existiert eine solche Unterteilung, so ist \(\bar{x} = (\bar{x}_B, \bar{x}_{N_1}, \bar{x}_{N_2}) \) Basisslösung für das System \(Ax = b \).

Es gilt \(\bar{x}_{N_1} = l_{N_1}, \bar{x}_{N_2} = u_{N_2}, \bar{x}_B = A_B^{-1}b - A_B^{-1}A_{N_1}l_{N_1} - A_B^{-1}A_{N_2}u_{N_2} \).

Wenn \(l_B \leq \bar{x}_B \leq u_B \implies \bar{x} \) ist zulässige Basislösung

31
Wenn \(l_B < \bar{x}_B < u_B \Rightarrow \bar{x} \) ist nicht entartete zulässige Basisslösung.

\[N_1 = \{ j : x_j \in A_{N_1} \} \] sei die Indexmenge aller Variablen, welche die untere Schranke erreicht haben und \(N_2 = \{ j : x_j \in A_{N_2} \} \) die Indexmenge aller Variablen, welche die obere Schranke erreicht haben.

Sei \(x_B \) Basisvariable mit

\[
x_B = A_B^{-1} b - A_B^{-1} A_{N_1} x_{N_1} - A_B^{-1} A_{N_2} x_{N_2}
\]

(3.27)

\[
z = c_B^T x_B + c_{N_1}^T x_{N_1} + c_{N_2}^T x_{N_2}
\]

\[
= c_B^T A_B^{-1} b - (c_{N_1}^T - c_B^T A_B^{-1} A_{N_1}) x_{N_1} - (c_{N_2}^T - c_B^T A_B^{-1} A_{N_2}) x_{N_2}
\]

\[
= c_B^T A_B^{-1} b - \bar{w}_{N_1}^T x_{N_1} - \bar{w}_{N_2}^T x_{N_2}
\]

\[
= c_B^T A_B^{-1} b - \sum_{j \in N_1} (c_j - z_j) x_{N_j} - \sum_{j \in N_2} (c_j - z_j) x_{N_j}
\]

(3.28)

Zur Vereinfachung und besseren Übersichtlichkeit schreibt man die relevanten Werte in ein Tableau, das nach jedem Basiswechsel modifiziert wird. Die rechte Spalte wird mit RHS (Right Hand Side) bezeichnet. Sie enthält den Zielfunktionswert und den Vektor der Basisslösung. I ist die Einheitsmatrix. Das Tableau hat folgende Gestalt:

Starttableau

<table>
<thead>
<tr>
<th>(z)</th>
<th>(\bar{x}_B)</th>
<th>(x_{N_1})</th>
<th>(x_{N_1})</th>
<th>(RHS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>1</td>
<td>0</td>
<td>(c_B^T A_B^{-1} A_{N_1} - c_{N_1})</td>
<td>(c_B^T a_B^{-1} A_{N_2} - c_{N_2})</td>
</tr>
<tr>
<td>(\bar{x}_B)</td>
<td>0</td>
<td>1</td>
<td>(A_B^{-1} A_{N_1})</td>
<td>(A_B^{-1} A_{N_2})</td>
</tr>
</tbody>
</table>

Im Folgenden seien \(c_{N_1}^T - c_B^T A_B^{-1} A_{N_1} := \bar{w}_{N_1}^T \) und \(c_{N_2}^T - c_B^T A_B^{-1} A_{N_2} := \bar{w}_{N_2}^T \) die reduzierten Kosten, \(A_B^{-1} A_{N_1} := Y_1 \) und \(A_B^{-1} A_{N_2} := Y_2 \). Bei der Simplex-Methode für beschränkte Variablen wird wie beim allgemeinen Simplex-Verfahren eine Basisvariable gegen eine Nicht-Basisvariable vertauscht, während alle anderen Variablen fixiert bleiben. Somit sucht man eine Verbesserung des Zielfunktionswertes entlang einer Kante. Den Index \(q \) der Variablen, welche die Basis betritt, erhält man durch die Berechnung des folgenden Wertes:

\[
max \{ \max_{j \in N_1} (z_j - c_j), \max_{j \in N_2} (c_j - z_j) \}
\]

(3.29)

Ist das erhaltene Maximum positiv, so wird durch Aufnahme der Variablen \(x_q \) in die Basis die maximale Verbesserung erreicht. Ist \(q \in N_1 \), so erhöht man die Variable vom aktuellen Wert \(l_q \). Andernfalls verringert man sie von ihrem Wert \(u_q \). Wäre das Maximum \(\leq 0 \), wäre \(z_j - c_j \leq 0 \quad \forall \ j \in N_1 \) und \(z_j - c_j \geq 0 \quad \forall j \in N_2 \), und damit wäre nach Gleichung 3.28 die aktuelle Lösung optimal.
Erhöhen der Variablen x_q von ihrem aktuellen Wert l_q

Erhöht man den aktuellen Wert der Variable $x_q = l_q$ um Δ_q und ersetzt diesen in Gleichung 3.27 und 3.28, so erhält man:

$$
\begin{align*}
x_B & = A_B^{-1}b - A_B^{-1}A_{N_1}l_{N_1} - A_B^{-1}A_{N_2}u_{N_2} - A_B^{-1}a_q \Delta_q \\
& = \hat{b} - y_q \Delta_q \\
z & = c_B^TA_B^{-1}b - \sum_{j \in N_1} (z_j - c_j)l_{N_j} - \sum_{j \in N_2} (z_j - c_j)u_{N_j} - (z_j - c_j)\Delta_q \\
& = \hat{z} - (z_j - c_j)\Delta_q
\end{align*}
$$

(3.30)

Es wird deutlich, dass eine Erhöhung um Δ_q zu einer Minimierung des Zielfunktionswerts (Gleichung (3.31)) führt, da $z_q - c_q > 0$.

Es stellt sich nun die Frage, um wie viel die Variable x_q erhöht werden kann, ohne dass eine der Restriktionen verletzt wird und somit die Lösung im Zulässigkeitsbereich bleibt. Es gibt drei Möglichkeiten, die dazu führen, dass die Variable nicht weiter erhöht werden kann, sie wird blockiert. Zum einen besteht die Möglichkeit, dass durch das Erhöhen eine Basisvariable ihre obere bzw. untere Schranke erreicht, oder die zu erhöhende Variable blockiert sich selbst, indem sie ihre obere Schranke erreicht. Wie beim primalen Simplex-Verfahren wird dieser Wert mit Hilfe des Minimum-Ratio-Tests errechnet. Man bestimmt, welche Variable als erstes blockiert. Diese wird dann aus der Basis herausgenommen.

1. **Basisvariable erreicht untere Schranke**

Sei γ_1 der Wert von Δ_q, durch den die Basisvariable auf ihren minimalen Wert sinkt. Er darf maximal den Wert des Abstands zwischen der unteren Schranke l_B der Variablen x_B und der Variablen selbst annehmen. Dieser Wert gibt also an, um wie viel die Variable x_B herabgesetzt werden kann. Es gilt:

$$
l_B \leq x_B = \hat{b} - y_q \Delta_q \quad \Rightarrow \quad y_q \Delta_q \leq \hat{b} - l_B
$$

$$
\gamma_1 = \begin{cases}
\min_i \left\{ \frac{b_i - l_{Bi}}{y_{iq}} : y_{iq} > 0 \right\} = \frac{b_i - l_{Bi}}{y_{iq}} : y_{iq} > 0 \\
\infty : y_{iq} \leq 0
\end{cases}
$$

(3.32)

2. **Basisvariable erreicht obere Schranke**

Sei γ_2 der Wert von Δ_q, durch den die Basisvariable auf ihren maximalen Wert steigt. Er darf maximal den Wert des Abstands zwischen der oberen Schranke u_B der Variablen x_B und der Variablen selbst annehmen. Dieser Wert gibt also an, um wie viel die Variable x_B ansteigen darf, damit keine Nebenbedingung verletzt wird. Es gilt:

$$
u_B \geq x_B = \hat{b} - y_q \Delta_q \quad \Rightarrow \quad y_q \Delta_q \geq \hat{b} - u_B
$$

$$
\gamma_2 = \begin{cases}
\min_i \left\{ \frac{u_{Bi} - b_i}{-y_{iq}} : y_{iq} < 0 \right\} = \frac{u_{Bi} - b_i}{-y_{iq}} : y_{iq} < 0 \\
\infty : y_{iq} \geq 0
\end{cases}
$$

(3.33)

33
KAPITEL 3. LINEARE OPTIMIERUNGSPROBLEME UND DEREN LÖSUNGSALGORITHMEN

3. **Variable** x_q erreicht obere Schranke

x_q erreicht die obere Schranke, wenn

$$\Delta_q = u_q - l_q \quad (3.34)$$

Das Minimum aus 3.32, 3.33 und 3.34 gibt nun den maximalen Wert für Δ_q an.

$$\Delta_q = \min\{\gamma_1, \gamma_2, u_q - l_q\}$$

Ist $\Delta_q = \infty$ \Rightarrow x_q wird nicht blockiert, und damit ist das Problem unbeschränkt.

Ist $\Delta_q < \infty$ \Rightarrow eine neue zulässige Basislösung wurde gefunden mit $x_q = l_q + \Delta_q$. Die Variablen x_B und z werden gemäß den Gleichungen 3.30 und 3.31 verändert.

Tableau Update

1. $\Delta_q = u_q - l_q$: aktuelle Basis ändert sich nicht; Indexmengenwechsel für Variable x_q
 RHS wird gemäß 3.30 und 3.31 modifiziert.

2. $\Delta_q = \gamma_1$ bzw. $\Delta_q = \gamma_2$: x_q wird gegen Variable x_B, in der Basis ausgetauscht nach 3.32 bzw. 3.33.
 RHS wird gemäß 3.30 und 3.31 modifiziert, dabei wird die r-te Komponente durch $l_q + \Delta_q$ ersetzt.

Erniedrigen der Variablen x_q **von ihrem aktuellen Wert** u_q

Wird das Maximum aus 3.29 für $j \in N_2$ erreicht, so wird die maximale Verbesserung des Zielfunktionswertes durch Erniedrigen der Variablen x_q erreicht. Es gilt $z_q - c_q < 0$, andernfalls wäre bereits das Optimum erreicht.

$$x_q = u_q - \Delta_q \quad (3.35)$$

$$x_B = b + \Delta_q \quad (3.36)$$

$$z = z + (z_q - c_q)\Delta_q \quad (3.37)$$

Analog zur Berechnung des Maximums des Wertes Δ_q für einen Anstieg der Variablen x_q, wird hier die maximale Reduzierung des Wertes x_q berechnet. Die maximale Reduzierung wird durch eine maximale Erhöhung von Δ_q erzielt.

$$\Delta_q = \min\{\gamma_1, \gamma_2, u_q - l_q\}$$

mit

$$\gamma_2 = \begin{cases}
\min_i \left\{ \frac{b_i - l_{i_q}}{-y_{i_q}} : y_{i_q} < 0 \right\} = \frac{b_i - l_{i_q}}{-y_{i_q}} & : y_q \not\geq 0 \\
\infty & : y_q \geq 0
\end{cases} \quad (3.38)$$
KAPITEL 3. LINEARE OPTIMIERUNGSPROBLEME UND DEREN LÖSUNGSALGORITHMEN

\[\gamma_2 = \begin{cases} \min_i \left\{ \frac{a_{ri} - \hat{b}_r}{y_{iq}} : y_{iq} > 0 \right\} = \frac{a_{ri} - \hat{b}_r}{y_{rq}} : y_{rq} \leq 0 \\ \infty : y_{rq} \leq 0 \end{cases} \] (3.39)

Ist \(\Delta_q = \infty \) \(\Rightarrow \) so wird die Variable nicht blockiert, das Problem ist somit unbeschränkt.

Ist \(\Delta_q < \infty \) \(\Rightarrow \) eine neue zulässige Basislösung wurde gefunden mit \(x_q = u_q - \Delta_q \). Die Basisvariablen \(x_B \) und der Zielfunktionswert \(z \) werden gemäß den Gleichungen 3.36 und 3.37 verändert.

Tableau Update

1. \(\Delta_q = u_q - l_q \): aktuelle Basis ändert sich nicht; Indexmengenwechsel für Variable \(x_q \). RHS wird gemäß 3.36 und 3.37 modifiziert.

2. \(\Delta_q = \gamma_1 \) bzw. \(\Delta_q = \gamma_2 \): \(x_q \) wird gegen Variable \(x_B \) in der Basis ausgetauscht nach 3.38 bzw. 3.39. RHS wird gemäß 3.36 und 3.37 modifiziert, dabei wird die r-te Komponente durch \(u_q - \Delta_q \) ersetzt.

Ein Basiswechsel wird so oft wiederholt und durchgeführt, bis (3.29) einen nicht positiven Wert liefert und damit die Optimallösung erreicht wurde oder durch \(\Delta_q = \infty \) die Unbeschränktheit des Problems bewiesen wurde.

3.1.3 Entartung und Komplexität

Eine Lösung \(\bar{x} \) eines linearen Problems ist nach M.S. Bazaraa entartet, wenn die Submatrix von \(A \) der straffen Restriktionen \((a^i)^T \bar{x} = b_i \) einen Rang echt kleiner als die Anzahl der straffen Restriktionen hat. Betrachtet man das Standard-Minimierungsproblem

\[\min \{ c^T x : Ax = b, x \geq 0 \} \]

mit \(A \in \mathbb{R}^{m \times n} \) und \(\text{Rang}(A) = m \), so ist die primale Lösung \(\bar{x} \) entartet genau dann, wenn die Anzahl der echt positiven Variablen kleiner als \(m \) ist. Ein lineares Problem heißt nicht entartet, wenn alle Basislösungen nicht entartet sind. Dies ist eine hinreichende Bedingung für die Konvergenz des Simplex-Algorithmus.

Ist das Problem jedoch entartet, kann es passieren, dass das System bei einer ungeeigneten Pivotwahl zu kreisen beginnt. D.h. in einer endlichen Anzahl von Iterationen wiederholt sich die Wahl der Basis, die aktuelle Ecke wird nicht verlassen, es führt also zu keiner Verbesserung des Zielfunktionswertes, und der Algorithmus terminiert nicht. Beim Simplex-Verfahren mit beschränkten Variablen ist dies der Fall, wenn die \(\gamma_1 \) oder \(\gamma_2 \) gleich Null; dann ändert sich die
KAPITEL 3. LINEARE OPTIMIERUNGSPROBLEME UND DEREN LÖSUNGSALGORITHMEN

zugrunde liegende Basis, jedoch der Extrempunkt nicht. Beim primalen Simplex-Verfahren
ist dies der Fall, wenn \(b_i = 0 \) für ein \(i = 1, \ldots, m \).

Es gibt verschiedene Regeln, die das Auftreten von Kreiseln verhindern, siehe dazu M.S. Baz-
Algorithmus schon \(O(mn) \) Rechenoperationen. Bis heute konnte noch nicht bewiesen werden,
dass die Laufzeit des Simplex-Algorithmus eine polynomielle Funktion in der Anzahl der Va-
riablen eines Problems ist. Beispiele belegen nur, dass eine exponentielle Anzahl an Schritten
bei einer ungeeigneten Pivotregel benötigt werden kann [24]. Im Mittel liefert der Simplex-
Algorithmus in polynomieller Zeit eine Lösung (s. Borgwardt [5]).

3.1.4 Farkas’ Lemma

Das Farkas’ Lemma und die Karush-Kuhn-Tucker (KKT)-Bedingung beschreiben notwendige
und hinreichende Optimalitätskriterien für die lineare Programmierung. Das Farkas’ Lemma
bildet die Grundlage für die KKT-Bedingung. Es besagt, dass nur eines von zwei linearen
Gleichungssystemen eine Lösung haben kann.

Lemma 3.1 Nur eines der folgenden Systeme hat eine Lösung:

\[
\text{System 1: } Ax \geq 0 \text{ und } c^T x < 0 \\
\text{System 2: } w^T A = c^T \text{ und } w \geq 0
\]

Dabei ist \(A \in \mathbb{R}^{m \times n} \) und \(c \) ist \(n \)-dimensionaler Vektor und \(w \) \(m \)-dimensionaler Vektor.

Beweis 2 : Angenommen System 1 hat Lösung \(x \). Hätte System 2 auch eine Lösung \(w \), so
wäre \(c^T x = w^T A x \geq 0 \), da \(w \geq 0 \) und \(Ax \geq 0 \), aber nach Voraussetzung ist \(c^T x < 0 \)
damit ein Widerspruch.

Nehmen wir also an, System 1 hat keine Lösung, und versuchen daraus zu beweisen, dass
System 2 eine Lösung hat. Wir betrachten das primale Problem

\[
P : \min \{ c^T x : Ax \geq 0 \}
\]

Mit optimaler Lösung Null. \(c^T x = 0 \) ist das Minimum, da ansonsten System 1 eine Lösung
hätte. Wir transformieren \(P \) in Standardform, indem wir \(x = x' - x'' \) schreiben mit \(x', x'' \geq 0 \).
Die Schlupfvariable bezeichnen wir mit \(s \). Wir erhalten das äquivalente Problem

\[
P' : \min \{ c^T x' - c^T x'' : Ax' - Ax'' - s = 0, x', x'', s \geq 0 \}
\]

Damit ist \(x' = x'' = 0, s = 0 \) ein optimaler Extrempunkt für \(P' \). Wir starten mit der Variablen
\(s \) als Basis und suchen von dieser ausgehend eine optimale Basis für \(P' \), für die gilt \(z_j - c_j \leq 0 \)
für alle Variablen. \(w = c_B A_B^{-1} \) seien die Simplex-Multiplikatoren der Basis \(B \). Da für alle
Variablen \(z_j - c_j = w a_j - c_j \leq 0 \) ist, erhalten wir \(wa - c \leq 0, -wa + c \leq 0 \) und \(-w \leq 0 \) von
den Spalten der Variablen \(x', x'' \) und \(s \). Damit existiert ein \(w \geq 0 \) mit \(w^T A = c^T \).
KAPITEL 3. LINEARE OPTIMIERUNGSPROBLEME UND DEREN LÖSUNGSALGORITHMEN

Abbildung 3.1: Geometrische Darstellung des Farkas’ Lemmas

Geometrische Interpretation des Farkas’ Lemma

Zur besseren Darstellung schreiben wir System 1 um, indem wir x durch -y ersetzen. Wir erhalten: Ay \leq 0 unter y \leq 0 und c^T y > 0. Jede Zeile von A erfüllt die Ungleichung a_i y \leq 0 \forall i = 1, .., m, d.h. geometrisch wird eine Fläche aufgespannt, die zu jedem Zeilenvektor mindestens einen Winkel von 90° hat. Variablen, welche die Bedingung c^T y > 0 erfüllen, spannen einen Halbraum auf, welcher aus allen Vektoren y gebildet wird, die zu c einen kleineren Winkel als 90° aufweisen. Existiert ein Schnitt dieser beiden Flächen, so hat System 1 eine Lösung.

System 2 hat eine Lösung, wenn gilt w^T A = c^T für w \geq 0. D.h. \sum_{i=1}^m w_i a_{ij} = c_j und w_i \geq 0 für i = 1, .., m, da dies für alle Spalten j = 1, .., n gilt, schreiben wir \sum_{i=1}^m w_i a^i = c. a^i bezeichnet die i-te Zeile. Mit anderen Worten bedeutet dies, das System hat eine Lösung genau dann, wenn der Vektor c im Aufspann der Vektoren a^i mit i = 1, .., m liegt.

3.1.5 Das Karush-Kuhn-Tucker-Optimalitäts-Kriterium

Wir betrachten das lineare Minimierungsproblem min\{cx : Ax \geq b, x \geq 0\}, mit A \in \mathbb{R}^{m \times n}, c
ist n-dimensionaler Vektor, b ist m-dimensionaler Vektor. \bar{x} bezeichne eine beliebige zulässige Basislösung. Im Folgenden sei $Gx \geq g$ die Menge der straffen Ungleichungen von $Ax \geq b$ mit $x \geq 0$ im Punkt \bar{x}. Im Falle dass es sich bei \bar{x} um den Optimalpunkt handelt, kann es keine Abstiegsrichtung d geben, so dass $c^T d < 0$ (sonst verbessert sich der Zielfunktionswert nicht) und $Gd \geq 0$ (damit der Zulässigkeitsbereich nicht verlassen wird). Ist \bar{x} keine Optimallösung, würde sich der Zielfunktionswert verringern, da $c^T d < 0$ und man bliebe bzgl. der straffen Restriktionen $Gx \geq g$ im Zulässigkeitsbereich, da $G(\bar{x} + \lambda d) = G\bar{x} + \lambda Gd = g + \lambda Gd \geq g$, für ein beliebiges $\lambda \geq 0$. Ferner wären für $\lambda > 0$ auch die restlichen Restriktionsungleichungen erfüllt.

Da das System $c^T d < 0$ und $Gd \geq 0$ keine Lösung besitzt, existiert nach dem Farkas’ Lemma (3.1) eine Variable $u \geq 0$, so dass $u^T G = c^T$. In Bezug auf das komplette System $Ax \geq b$ unter $x \geq 0$ müssen zunächst einige Notationen geklärt werden. Die i-te Zeile von A wird mit a^i bezeichnet für $i = 1, \ldots, m$, und e_j ist der j-te Einheitsvektor, d.h. alle bis auf den j-ten Eintrag, welcher eine 1 ist, sind Null. I ist die Indexmenge der straffen Restriktionen in Bezug auf die Variable mit

$$I = \{i : a^i \bar{x} = b_i\}$$

und J ist die Indexmenge der sich schneidenden Restriktionen im Punkt \bar{x} aus der Menge $x \geq 0$ mit

$$J = \{j : \bar{x}_j = 0\}$$

Also besteht G aus den Zeilen $a^i, i \in I$ und $e_j, j \in J$. Der Vektor u wird unterteilt in w und v mit $u = (w_i \text{ für } i \in I, v_j \text{ für } j \in J) \geq 0$. Die Bedingung $u^T G = c^T$, $u \geq 0$ kann neu formuliert werden als

$$\sum_{i \in I} w_i a^i + \sum_{j \in J} v_j e_j = c$$ \hspace{1cm} (3.40)

$$w_i \geq 0 \text{ für } i \in I \quad v_j \geq 0 \text{ für } j \in J$$ \hspace{1cm} (3.41)

Die Gleichungen (3.40) und (3.41) bilden zusammen mit der Zulässigkeit von \bar{x} die KKT-Bedingungen der linearen Programmierung. Die KKT-Bedingungen sind also notwendige Kriterien für die Optimalität einer Lösung. Aus geometrischer Sicht bedeutet die KKT-Bedingung, dass eine zulässige Lösung optimal ist, wenn der Gradient der Zielfunktion c durch eine nicht-negative Linearkombination der Gradienten der straffen Restriktionen dargestellt werden kann. Dabei ist a^i der Gradient der der Restriktion $a^i x \geq 0$ bzw. e_j der Gradient der Variablenrestriktion $x_j \geq 0$. Liegt c also im Aufspann der Gradienten der Restriktionen, welche sich im Punkt \bar{x} schneiden, so ist \bar{x} Optimalpunkt.

Es bleibt noch zu zeigen, dass die KKT-Bedingung ein hinreichendes Kriterium für die Optimalität ist. Dazu wählen wir zu der Optimallösung \bar{x} eine beliebige zulässige Lösung \hat{x} und multiplizieren die Gleichung (3.40) auf beiden Seiten von links mit $(\hat{x} - \bar{x})$ und erhalten

$$c^T (\hat{x} - \bar{x}) = \left(\sum_{i \in I} w_i a^i + \sum_{j \in J} v_j e_j\right)(\hat{x} - \bar{x})$$

$$\Leftrightarrow c^T \hat{x} - c^T \bar{x} = \sum_{i \in I} w_i (a^i \hat{x} - a^i \bar{x}) + \sum_{j \in J} v_j (e_j \hat{x} - e_j \bar{x})$$

Da $a^i \bar{x} = b_i$ für $i \in I$ und $e_j \bar{x} = 0$ für $j \in J$ folgt

$$c^T \hat{x} - c^T \bar{x} = \sum_{i \in I} w_i (a^i \hat{x} - b_i) + \sum_{j \in J} v_j e_j \hat{x}$$
Da $a^i \hat{x} \geq b_i$ für $i \in I$ und $e_j \hat{x} \geq 0$ für $j \in J$ folgt
\[c \hat{x} - c \bar{x} = \sum_{i \in I} w_i (a^i \hat{x} - b_i) + \sum_{j \in J} v_j e_j \hat{x} \geq 0 \] (3.42)
und damit gilt $c^T \hat{x} \geq c^T \bar{x}$ ist also Optimallösung. Somit haben wir gezeigt, dass die KKT-Bedingung sowohl ein notwendiges als auch ein hinreichendes Kriterium darstellt. Eine oft verwendete Formulierung der KKT-Bedingung ist folgende:
\[Ax \geq b, \quad x \geq 0 \] (3.43)
\[wA + v = c, \quad w \geq 0, v \geq 0 \] (3.44)
\[w(Ax - b) = 0, \quad vx = 0 \] (3.45)
Die Vektoren $w = (w_1, \ldots, w_m) \geq 0$ und $v = (v_1, \ldots, v_n) \geq 0$ werden die Lagrange-Multiplikatoren der Restriktionen $Ax \geq 0$ und $x \geq 0$ genannt, dabei sind w_i und v_j Null für die nicht straffen Restriktionen. Gleichung (3.44) gewährleistet die primale Zulässigkeit der Lösung, Gleichung (3.44) die duale Zulässigkeit. Das Zusammenspiel von primalen und dualem System wird im folgenden Abschnitt erläutert. Die letzte Gleichung (3.45) wird oft als komplementärer Schlupf bezeichnet. Diese Gleichung sagt, dass entweder $w_i = 0$ oder die i-te Schlupfvariable Null ist und damit die i-te Restriktion straff. Die Gleichung $vx = 0$ bedeutet, dass entweder v_j oder e_j Null sind. Damit sind die Gleichungen (3.44) und (3.45) eine äquivalente Darstellung der Gleichungen (3.40) und (3.41).

Zusammengefasst bedeutet das, eine Lösung ist dann optimal, wenn sie sowohl primal als auch dual zulässig ist. Während des Simplex-Algorithmus wird die primale Zulässigkeit sowie die Bedingung des komplementären Schlups durchgehend garantiert. Die duale Zulässigkeit wird verletzt. Diese Verletzung wird aber dazu genutzt, um den Zielfunktionswert maximal zu verbessern, indem das kleinste negative $c_j - z_j$ genutzt wird, solange bis die Lösung dual zulässig wird.

3.1.6 Das duale Problem

Wie im vorherigen Abschnitt erwähnt, gibt es zu jedem primalen linearen Problem ein zugehöriges duales lineares Problem, das für die Bestimmung der Optimalität von großer Bedeutung ist. Im Folgenden werden wir das Zusammenspiel von primalem (LP) und dualem (DP) System erläutern.

Beispiel Betrachte folgendes (LP):

\[
\begin{align*}
\text{max} & \quad 8x_1 + 3x_2 - 2z_3 \\
\text{unter} & \quad x_1 - 6x_2 + x_3 \geq 2 \\
& \quad 5x_1 + 7x_2 - 2x_3 = -4 \\
& \quad x_1 \leq 0, x_2 \geq 0, x_3 \text{ frei}
\end{align*}
\]
KAPITEL 3. LINEARE OPTIMIERUNGSPROBLEME UND DEREN LÖSUNGSAlgORITHMEN

<table>
<thead>
<tr>
<th></th>
<th>Minimierungsproblem</th>
<th>Maximierungsproblem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>≥ 0</td>
<td>≤</td>
</tr>
<tr>
<td></td>
<td>≤ 0</td>
<td>≥</td>
</tr>
<tr>
<td></td>
<td>frei</td>
<td>=</td>
</tr>
<tr>
<td>Restriktion</td>
<td>≥</td>
<td>≥ 0</td>
</tr>
<tr>
<td></td>
<td>≤</td>
<td>≤ 0</td>
</tr>
<tr>
<td></td>
<td>frei</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3.1: Transformationsregeln zwischen (LP) und (DP)

Das zugehörige (DP) sieht folgendermaßen aus:

\[
\begin{align*}
\min & \quad 2w_1 - 4w_2 \\
\text{unter} & \quad w_1 + 5w_2 \leq 8 \\
& \quad -6w_1 + 7w_2 \geq 3 \\
& \quad w_1 - 2w_2 = -2 \\
& \quad w_1 \leq 0, w_2 \text{ frei}
\end{align*}
\]

Zunächst wird von einem linearen Problem in Standard-Form ausgegangen:

\[(LP) \quad \min c^T x \quad \text{unter} \quad Ax \geq b, x \geq 0.\]

Zu diesem gehört ein Maximierungsproblem in kanonischer Form

\[(DP) \quad \max b^T w \quad \text{unter} \quad A^T w \leq c, w \geq 0.\]

Dabei ist c wie gewohnt ein n-dimensionaler Vektor, b ein m-dimensionaler Vektor, \(A \in m \times n\).

Der folgende schwache Dualitätssatz stellt einen ersten Zusammenhang zwischen den zwei Programmen dar.

Satz 3.2 (Schwacher Dualitätssatz) Seien \(x_0\) und \(w_0\) beliebige zulässige Lösungen von oben definiertem (LP) und (DP). So gilt \(Ax_0 \geq b\) mit \(x_0 \geq 0\) und \(A^T w_0 \leq c\) mit \(w_0 \geq 0\), dann gilt:

\[c^T x_0 \geq b^T w_0.\]

Beweis 3:

\[c^T x_0 \geq (A^T w_0)x_0 = w_0^T (Ax_0) \geq w_0^T b = b^T w_0\]

Als unmittelbare Folgerung aus dem schwachen Dualitätssatz erhalten wir:
KAPITEL 3. LINEARE OPTIMIERUNGSPROBLEME UND DEREN LÖSUNGSALGORITHMEN

Korollar 3.1 Seien (LP) und (DP) wie oben. Dann gilt

• Ist (LP) unbeschränkt, so ist (DP) unzulässig.
• Ist (DP) unbeschränkt, so ist (LP) unzulässig.

Die Unbeschränktheit eines Systems impliziert also die Unzulässigkeit des anderen Systems. Dies bedeutet jedoch nicht, dass man aus der Unzulässigkeit des einen Problems auf die Beschränktheit des jeweiligen anderen Problems schließen kann.

Korollar 3.2 \(x_0 \) und \(w_0 \) seien zulässige Lösungen der obig definierten Probleme (LP) und (DP), und es gilt \(c^T x_0 = b^T w_0 \), so sind \(x_0 \) und \(w_0 \) Optimallösungen für (LP) und (DP).

Der starke Dualitätssatz ist, wie der Name schon sagt, eine Verschärfung des schwachen Dualitätssatzes. Hat eines der Systeme eine Optimallösung, so besitzt das zugehörige duale Problem ebenfalls eine Optimallösung mit identischem Zielfunktionswert.

Satz 3.3 (Starker Dualitätssatz) Das lineare (LP) sei zulässig und beschränkt mit Optimallösung \(\bar{x} \). Dann gelten folgende Aussagen:

• Das zu (LP) gehörende duale Problem (DP) ist zulässig und beschränkt.
• Ist \(\bar{w} \) eine Optimallösung von (DP), so sind die Zielfunktionswerte gleich \(c^T \bar{x} = b^T \bar{w} \).

Beweis 4: Wir nehmen an, dass zugrunde liegende (LP) hat die Form

\[
\min \{ c^T x : Ax \ge b, x \ge 0 \}.
\]

Sei \(\bar{x} \) Optimallösung des (LP) mit Basis \(B \). Damit bildet \(\bar{x} \) nach dem schwachen Dualitätssatz eine obere Schranke des dualen Problems (DP), das damit beschränkt ist. Nach dem Simplexverfahren ist \(\bar{x} \) eine Optimallösung, wenn \(c^T_B A_B^{-1} A - c^T \le 0 \). D.h. ist \(\bar{x} \) optimal, so gilt \(c^T \ge c^T_B A_B^{-1} A \). Wir definieren \(\bar{w}^T := c^T_B A_B^{-1} \). Es gilt

\[
A^T \bar{w} = A^T (c^T_B A_B^{-1})^T = (c^T_B A_B^{-1} A^T) \le (c^T)^T = c
\]

\(\bar{w} \) ist damit ein zulässiger Punkt für (DP) mit \(\max \{ b^T w : A^T w \le c, w \ge 0 \} \). Damit ist der erste Teil des Satzes bewiesen.

Da die dual zulässige Lösung \(\bar{w} \) die Gleichung

\[
b^T \bar{w} = \bar{w}^T b = c^T_B A_B^{-1} b = c^T_B \bar{x} = c^T \bar{x}
\]

erfüllt, ist der zweite Teil der Aussage bewiesen.
KAPITEL 3. LINEARE OPTIMIERUNGSPROBLEME UND DEREN LÖSUNGSALGORITHMEN

Dualer Simplex-Algorithmus

Ziel des dualen Simplex-Algorithmus ist das Lösen eines primalen Problems. Der Name dual kommt daher, dass von einer dual zulässigen Lösung ausgegangen wird, welche bei jeder Iteration erhalten bleibt, bis primale Zulässigkeit erzielt wird und damit nach dem starken Dualitätssatz Optimalität für das (LP) vorliegt. Das lineare primale Programm (LP) hat folgende Gestalt: \(\min \{ c^T x : Ax = b, x \geq 0 \} \). \(A \in \mathbb{R}^{m \times n} \) mit \(\text{Rang}(A) = m \).

Initialisierung

\(\hat{A} := A^{-1} A_N, \hat{b} := A^{-1} b, \hat{c}^T = c_B^T A_B^{-1} A_N - c_N^T \)

Wählt beliebige dual zulässige Startlösung mit Basis \(B \), für die gilt \(z_j - c_j = c_B^T A_B^{-1} a_j - c_j \leq 0 \) für alle \(j \).

Hauptschritte

1. **Ist** \(\hat{b} = A_B^{-1} b \geq 0 \) **⇒ STOP Optimallösung**
2. **Sonst wähle Pivotzeile** \(r \) mit \(\hat{b}_r < 0 \) durch \(\hat{b}_r = \min \{ b_i : b_i < 0 \} \) **⇒ Vektor** \(a_B \) **verlässt Basis**
3. **Ist** \(y_{rj} \geq 0 \) **für alle** \(j \) **⇒ STOP (DP) unbeschränkt und (LP) ist unzulässig**
4. **Sonst wähle Pivotspalte** \(q \) mit Hilfe des Minimum-Ratio-Tests:
 \[\frac{z_q - c_q}{y_{rq}} = \min_{j} \{ \frac{z_j - c_j}{y_{rj}} : y_{rj} < 0 \} \]
 Vektor \(a_q \) wird in Basis aufgenommen.
 ⇒ Neue Basis \(B' = (B \setminus B_r) \cup q \) und \(N' = (N \setminus q) \cup B_r \)
5. **Ersetze** \((B, N) \) durch \((B', N') \). Der Basiswechsel entspricht einer Gaußelimination mit \(y_{rq} \) als Pivotelement **⇒ Gehe zu 1.**

3.1.7 Wirtschaftliche Betrachtungsweise der dualen Lösung

Seien das primale und duale Problem in der gewohnten Darstellung gegeben:

\[
\begin{align*}
\min & \quad cx \\
(LP) & \quad \text{unter } Ax \geq b \\
& \quad x \geq 0
\end{align*}
\]

\[
\begin{align*}
\max & \quad wb \\
(DP) & \quad \text{unter } wA \leq c \\
& \quad w \geq 0
\end{align*}
\]

B bezeichnet die Basis des (LP), \(c_B \) sind die Kosten und \(x^* \) eine nicht entartete optimale Lösung. \(N \) ist Indexmenge der Nicht-Basisvariablen. Der optimale Zielfunktionswert \(z^* \) ist:

\[
z^* = c_B^T A_B^{-1} b - \sum_{j \in N} (z_j - c_j) x_j = w^* b - \sum_{j \in N} (z_j - c_j) x_j.
\]
Durch Ableiten des Zielfunktionswertes nach der i-ten straffen Restriktion erhält man:

\[\frac{\delta z^*}{\delta b_i} = w_i^* . \]

\(w_i^* \) ist damit der Anstieg des Zielfunktionswertes durch die Erhöhung der i-ten Basisvariablen \(b_i \) um eine Einheit unter der Voraussetzung, dass keine weiteren Variablen verändert werden.

Sei die i-te Restriktion beispielsweise die Ungleichung, die erzwingt, dass die Nachfrage an Ort \(s \) durch Energieart \(p \) zum Zeitpunkt \(t \) gestillt sein muss, straff. Eine Erhöhung der Nachfrage in \(s \) durch \(p \) zum Zeitpunkt \(t \) um eine Einheit führt damit zu Mehrkosten in Höhe der dualen Variablen \(w_i \). Der Vektor \(w \) der dualen Lösungen wird deshalb auch als Vektor der marginalen Kosten oder Grenzkosten bezeichnet.

Ist eine Restriktion straff durch Erreichen der oberen Schranke (\(\leq \) Restriktion), sind die marginalen Kosten negativ, da durch eine Erhöhung dieser oberen Schranke der Zulässigkeitsbereich erweitert wird und damit der Zielfunktionswert weiter herabgesetzt werden kann. Wird beispielsweise der Zielfunktionswert dadurch bestimmt, dass keine weiteren Ausbaukapazitäten für Windenergieanlagen vorhanden sind, so haben wir eine obere Schranke erreicht. Die marginalen Kosten sind nun so zu interpretieren, dass bei der Möglichkeit eines weiteren Zubaus von Windenergieanlagen die Kosten um die zugehörige duale Lösung sinken würden.

Zwingen wir dagegen dass Modell, beispielsweise Braunkohlekraftwerke zu nutzen, und wird dadurch eine untere Kapazitätsschranke erreicht, bei deren Erhöhung der Zulässigkeitsbereich eingeschränkt wird, sind die marginalen Kosten positiv. Der Zubau von einem weiteren Leistungs von einem Megawatt Braunkohlekraftwerk führt also zu einem Kostenanstieg in der Stromerzeugung in Höhe der dualen Lösung.

3.2 Barrier-Methode

Als Voraussetzung des Funktionierens dieser Methode muss natürlich gewährleistet sein, dass das Innere des Zulässigkeitsbereichs nicht leer ist. Damit kann das Verfahren ausschließlich auf Probleme mit nur Ungleichungsrestriktionen angewendet werden. Vor der Umwandlung vom primalen ins Barrier-Problem müssen demnach Gleichungen eliminiert werden. Gabe es
KAPITEL 3. LINEARE OPTIMIERUNGSPROBLEME UND DEREN LÖSUNGSALOGRITHMEN

Gleichungen $h(x) = 0$, wäre die Bedingung, einen Startpunkt aus dem Inneren der nichtleeren Menge $\{x : g(x) \leq 0, h(x) = 0\}$ zu finden offensichtlich unmöglich und damit verletzt. Inhaltlich orientiert sich das folgende Kapitel an dem Buch *Nonlinear Programming, Theory and Algorithms* von S. Bazaraa, D. Sherali und M. Shetty, Kapitel 9 [3].

Das primale Problem lässt sich wie folgt beschreiben:

Das primale Problem

\[
\begin{align*}
\text{min} & \quad f(x) \\
\text{unter} & \quad g(x) \leq 0 \\
& \quad x \in X
\end{align*}
\]

g bezeichnet eine Vektorfunktion, deren Komponenten g_1, \ldots, g_m und die Zielfunktion f stetige Funktionen im n-dimensionalen euklidischen Raum E_n darstellen. X ist eine nichtleere Teilmenge in E_n. Das daraus resultierende Barrrier-Problem sieht folgendermaßen aus:

Das Barrier-Problem

\[
\begin{align*}
\text{min} & \quad \Theta(\mu) \\
\text{unter} & \quad \mu \geq 0
\end{align*}
\]

Dabei ist $\Theta(\mu) = \inf \{f(x) + \mu B(x) : g(x) < 0, x \in X\}$, $\mu \in \mathbb{R}$. $f(x) + \mu B(x)$ wird als Hilfsfunktion bezeichnet. $B(x)$ ist die so genannte Barrier-Funktion. Eine ideale Barrier-Funktion würde für Punkte im Inneren des Zulässigkeitsbereichs $\{x : g(x) < 0\}$ den Wert Null liefern und auf dem Rand den Wert ∞. Da die Unstetigkeit einer solchen Funktion zu Problemen bei der Berechnung führt, zieht man eine realistischere Barrier-Funktion in Betracht, an welche zwei Bedingungen gestellt werden.

- B ist nicht-negativ und stetig im Bereich $\{x : g(x) < 0\}$
- B nähert sich dem Wert ∞, wenn man sich vom Inneren dem Rand $\{x : g(x) \leq 0\}$ nähert.

Die Barrier-Funktion wird definiert durch

\[
B(x) = \sum_{i=1}^{m} \Phi[g_i(x)]
\]
Φ ist stetig im Bereich \{y : y < 0\}, und es gilt:

\[\Phi(y) \geq 0 \quad \text{für} \quad y < 0 \quad \text{und} \quad \lim_{y \to 0^-} \Phi(y) = \infty \quad (3.58) \]

Eine typische Barrier-Funktion, die obige Kriterien erfüllt, ist beispielsweise

\[B(x) = \sum_{i=1}^{m} \frac{-1}{g_i(x)}. \quad (3.59) \]

Das Lösen des unbeschränkten Barrier-Problems ist gegenüber dem beschränkten primalen Problem trotz der vorhandenen Bedingung \(g(x) < 0 \) einfacher, da die Barrier-Funktion verhindert, dass der Zulässigkeitsbereich verlassen wird. Dies gilt aber nur unter der Voraussetzung, dass der Startwert im Inneren der zulässigen Menge \(S = \{x : g(x) < 0\} \cap X \) liegt. Die vorhandenen Restriktionen fallen also nicht ins Gewicht.

Lemma 3.2 Seien \(f, g_1, \ldots, g_m \) stetige Funktionen in \(E_n \). \(X \) sei eine nichtleere abgeschlossene Menge in \(E_n \) und \(\{x \in X : g(x) < 0\} \) eine nichtleere Menge. \(B \) sei Barrier-Funktion, d.h. \(B(x) \geq 0 \) und stetig im Bereich \(x < 0 \) und \(\lim_{y \to 0^-} B(x) = \infty \). Ferner nehme man an, dass jede Folge \(\{x_k\} \) in \(X \) mit \(g(x_k) < 0 \) und \(f(x_k) + \mu B(x_k) \to \Theta(\mu) \) für irgendein \(\mu > 0 \) eine konvergente Teilfolge besitzt. Dann gilt:

1. \(\forall \mu > 0 \ \exists \ x_\mu \text{ mit } g(x_\mu) < 0 \text{ so dass } \Theta(\mu) = f(x_\mu) + \mu B(x_\mu) = \inf \{f(x) + \mu B(x) : g(x) < 0, x \in X\} \)
2. \(\inf \{f(x) : g(x) \leq 0, x \in X\} \leq \inf \{\Theta(\mu) : \mu > 0\} \)
3. Für \(\mu > 0 \) sind \(f(x_\mu) \) und \(\Theta(\mu) \) monoton steigende Funktionen von \(\mu \) und \(B(x_\mu) \) eine monoton fallende Funktion von \(\mu \). D.h für \(\mu > \lambda \) gilt \(f(x_\mu) > f(x_\lambda) \), \(\Theta(\mu) > \Theta(\lambda) \) und \(B(x_\mu) < B(x_\lambda) \)

Beweis: Betrachte ein \(\mu > 0 \). Nach Definition von \(\Theta \) existiert eine Folge \(\{x_k\} \) mit \(x_k \in X \) und \(g(x_k) < 0 \), so dass \(f(x_k) + \mu B(x_k) \to \Theta(\mu) = \inf \{f(x_k) + \mu B(x_k) : g(x_k) < 0, x \in X\} \). Nach Annahme hat \(\{x_k\} \) eine konvergente Teilfolge \(\{x_k\}_\kappa \) mit Grenzwert \(x_\mu \in X \). Wegen der Stetigkeit von \(g \) ist \(g(x_\mu) \leq 0 \). Es bleibt noch zu zeigen, dass \(g(x_\mu) < 0 \).

Angenommen \(g(x_\mu) = 0 \), dann wäre \(g_i(x_\mu) = 0 \) für ein \(1 \leq i \leq m \), und damit gilt für ein \(k \in \kappa : B(x_k) \to \infty \). Woraus \(\Theta(\mu) = \infty \) folgt. Dies ist ein Widerspruch zu der Voraussetzung, die Menge \(\{x : x \in X, g(x) < 0\} \) sei ungleich der leeren Menge. Damit wäre Teil 1 bewiesen. Da \(B(x) \geq 0 \) für \(g(x) < 0 \), gilt für alle \(\mu > 0 \):

\[\Theta(\mu) = \inf \{f(x) + \mu B(x) : g(x) < 0, x \in X\} \]
\[\geq \inf \{f(x) : g(x) < 0, x \in X\} \]
\[\geq \inf \{f(x) : g(x) \leq 0, x \in X\} \]

Teil 3: Sei nun \(\mu > \lambda > 0 \). Aus \(B(x) \geq 0 \) für \(g(x) < 0 \) folgt \(f(x) + \mu B(x) \geq f(x) + \lambda B(x) \) und damit \(\Theta(\mu) \geq \Theta(\lambda) \). Nach Teil 1 existiert \(x_\mu \) und \(x_\lambda \), so dass gilt
Gleichheit

Betrachten wir folgendes Problem: Anhand eines einfachen Beispiels soll die Idee der Barrier-Funktion veranschaulicht werden.

\[f(x_\mu) + \mu B(x_\mu) \leq f(x_\lambda) + \mu B(x_\lambda) \]
\[f(x_\lambda) + \lambda B(x_\mu) \leq f(x_\mu) + \lambda B(x_\mu) \]

Addiert man diese zwei Ungleichungen und ordnet die Glieder neu, erhält man \((\mu - \lambda)(B(x_\mu) - B(x_\lambda)) \leq 0\). Da \(\mu - \lambda > 0\), folgt \(B(x_\mu) - B(x_\lambda) \leq 0\) und damit \(B(x_\mu) \leq B(x_\lambda)\) q.e.d.

Aus Lemma 3.2 wissen wir, dass es sich bei \(\Theta\) um eine monoton steigende Funktion von \(\mu\) handelt und demnach \(\inf_{\mu>0} \Theta(\mu) = \lim_{\mu \to 0^+} \Theta(\mu)\). Der folgende Satz zeigt, dass die Optimallösung des primalen Problems identisch mit dem Grenzwert \(\lim_{\mu \to 0^+} \Theta(\mu)\) ist, so dass es möglich ist, das unbeschränkte Barrier-Problem anstelle des primalen Problems zu lösen.

Satz 3.4 Seien \(f, g_1, \ldots, g_n\) stetige Abbildungen mit \(f : E_n \to E_1\) und \(g : E_n \to E_m\). \(X\) sei nicht-leere abgeschlossene Menge in \(E_n\) und \(\{x \in X : g(x) < 0\}\) sei nicht-leer. Das primale Problem \(\min f(x)\) unter \(g(x) \leq 0\) mit \(x \in X\) hat Optimallösung \(\bar{x}\) mit folgender Eigenschaft. Sei \(N\) die Umgebung von \(\bar{x}\), und es existiert \(x \in X \cap N : g(x) < 0\). Dann gilt \(\min \{f(x) : g(x) \leq 0, x \in X\} = \lim_{\mu \to 0^+} \Theta(\mu) = \inf_{\mu>0} \Theta(\mu)\).

Gilt \(\Theta(\mu) = f(x_\mu) + \mu B(x_\mu)\) mit \(x_\mu \in x\) und \(g(x_\mu) < 0\). Nach Lemma 3.2 existiert ein solcher Punkt. Dann ist der Grenzwert jeder konvergenten Teilfolge von \(\{x_k\}\) eine Optimallösung des primalen Problems, und ferner gilt: \(\mu B(x_\mu) \to 0\) für \(\mu \to 0^+\).

Beweis: Sei \(\bar{x}\) Optimallösung des primalen Problems mit obiger Eigenschaft. Sei \(\epsilon > 0\). Da \(f\) stetig, und nach Voraussetzung des Satzes existiert \(\bar{x} \in X\) mit \(g(\bar{x}) < 0\), so dass gilt: \(f(\bar{x}) + \epsilon > f(\bar{x})\). Füre \(\mu > 0\) gilt also \(f(\bar{x}) + \epsilon + \mu B(x_\mu) > f(\bar{x}) + \mu B(x_\mu) > \Theta(\mu)\). Betrachtet man den Grenzwert für \(\mu \to 0^+\), folgt \(f(\bar{x}) + \epsilon \geq \lim_{\mu \to 0^+} \Theta(\mu)\). Nach Teil 2 von Lemma 3.2 folgt Gleichheit \(f(\bar{x}) + \epsilon = \lim_{\mu \to 0^+} \Theta(\mu)\).

Für \(\mu \to 0^+\) und weil \(B(x_\mu) \geq 0\) und \(x_\mu\) zulässig für das originale Problem folgt:

\[\Theta(\mu) = f(x_\mu) + \mu B(x_\mu) \geq f(x_\mu) \geq f(\bar{x}) \]

Betrachten wir jetzt den Grenzwert \(\mu \to 0^+\) unter der Berücksichtigung, dass \(f(\bar{x}) = \lim_{\mu \to 0^+} \Theta(\mu)\), folgt: \(f(x_\mu) \to f(\bar{x})\) und \(f(x_\mu) + \mu B(x_\mu) \to f(\bar{x}) + \mu B(x_\mu) \to 0\) für \(\mu \to 0^+\). Ferner existiert eine konvergente Teilfolge von \(\{x_\mu\}\) mit Grenzwert \(x' \Rightarrow f(x') = f(\bar{x})\). Da \(x_\mu\) zulässig für das originale Problem für alle \(\mu \Rightarrow x'\) ist zulässig und damit optimal.

q.e.d.

Beispiel

Anhand eines einfachen Beispiels soll die Idee der Barrier-Funktion veranschaulicht werden.

Betrachten wir folgendes Problem:

\[
\begin{align*}
\min & \quad x \\
\text{unter} & \quad -2x + 3 \leq 0
\end{align*}
\]
Als Barrier-Funktion verwenden wir

\[B(x) = \frac{-1}{g(x)} = \frac{1}{2x - 3}. \]

Für ein \(\mu > 0 \) ist damit die Hilfsfunktion

\[f(x) + \mu B(x) = x + \frac{\mu}{2x - 3}. \]

In Abbildung 3.2 sind die Hilfs- und Barrierfunktion graphisch dargestellt. Beachte, dass \(x > 1, 5 \), da sonst \(B(x) \) die Bedingung der Nicht-Negativität verletzt. Durch Ableiten und Nullsetzen der Hilfsfunktion erhalten wir das Minimum

\[x_\mu = \frac{3}{2} + \sqrt{\frac{\mu}{8}} \]

und den Hilfszielfunktionswert durch Einsetzen von \(x_\mu \) in die Hilfsfunktion

\[\Theta(x_\mu) = \frac{3}{2} + 5\sqrt{\frac{\mu}{8}}. \]

Durch die Berechnung der Grenzwerte für \(\mu \to 0 \) erhält man nach Satz 3.4 den Optimalpunkt \(\bar{x} \) und den zugehörigen Zielfunktionswert \(f(\bar{x}) \) des Originalproblems. Es gilt

\[x_\mu = \frac{3}{2} + \sqrt{\frac{\mu}{8}} \to \frac{3}{2} = \bar{x} \quad \text{und} \quad \Theta(x_\mu) = \frac{3}{2} + 5\sqrt{\frac{\mu}{8}} \to \frac{3}{2} = f(\bar{x}). \]

Algorithmus

Initialisierung Sei \(\epsilon > 0 \) beliebig. Wähle zulässigen Punkt \(x_1 \in X \) mit \(g(x_1) < 0 \). Sei \(\mu_1 > 0, \beta \in (0, 1), k = 1 \).

Hauptschritte
1. Starte mit x_k und löse folgendes Problem:

$$\begin{align*}
\min & \quad f(x) + \mu_k B(x) \\
\text{unter} & \quad g(x) < 0 \\
& \quad x \in X
\end{align*}$$

Sei x_{k+1} die dabei erzielte Optimallösung.

2. Ist $\mu_k B(x_{k+1}) < \epsilon \Rightarrow$ STOP.
 Sonst sei $\mu_{k+1} = \beta \mu_k$. Ersetzt $k = k + 1$ und gehe zu 1.

Bemerkung: Das Lösen des Unterproblems in Schritt 1 erfolgt je nach Struktur durch ein beliebiges unbeschränktes Optimierungsverfahren, z.B. das Gradienten- oder Newton-Verfahren. Solche Verfahren werden u. a. in *Nonlinear Programming, Theory and Algorithms* von S. Bazaraa, D. Sherali und M. Shetty, Kapitel 10 [3], beschrieben.

Bei jeder Iteration wird die Hilfsfunktion 3.62 optimiert. Aus Lemma 3.2 wissen wir, dass es sich bei der Hilfsfunktion um eine monoton steigende Funktion in μ handelt; damit wird bei jeder Iteration des Algorithmus durch die Verringerung des Wertes μ eine Annäherung an das Optimum des Originalproblems erzielt.

3.3 Laufzeitvergleiche der von Cplex zur Verfügung gestellten Algorithmen

3.3.1 Darstellung des Problems als Matrix

In folgendem Abschnitt wird die Struktur der Restriktionsmatrix des Energieproblems skizziert. In der Matrixbeschreibung werden sowohl die Ungleichungen als auch die Gleichungen berücksichtigt.

Die Matrix A des linearen Problems lässt sich durch folgende Treppengestalt beschreiben:

$$A = \begin{pmatrix}
P_1 & S_1 & T_1 \\
P_2 & S_2 & T_2
\end{pmatrix}$$
Bei den Matrixeinträgen P_1, S_1, T_1, P_2, S_2 und T_2 von A handelt es sich wiederum um Matrizen, deren Dimension in Tabelle 3.2 auf Seite 49 dargestellt ist. Die Struktur der Matrizen wird im Folgenden skizziert. Die erste Spalte der Matrix A, also die Matrizen P_1 und P_2, beinhalten Variablen, welche für die Energieerzeugung (engl.: process) von Bedeutung sind. Die zweite Spalte, also die Matrizen S_1 und S_2, besteht aus Variablen der Energiespeicherung und die letzte Spalte, die Matrizen T_1 und T_2, haben als Elemente Transportvariablen. Da es sich bei der Energieerzeugung, der Stromspeicherung und dem Transport um Prozesse mit unterschiedlicher Komplexität handelt, unterscheiden sich die Dimensionen der jeweiligen Matrizen in Zeilen- und Spaltenanzahl.

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Dimension</th>
<th>Zeilen</th>
<th>Spalten</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>366t</td>
<td>3096+3096</td>
<td></td>
</tr>
<tr>
<td>S_1</td>
<td>366t</td>
<td>129t+258</td>
<td></td>
</tr>
<tr>
<td>T_1</td>
<td>366t</td>
<td>430t+430</td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>6192t+3097</td>
<td>3096t+3096</td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td>301t+301</td>
<td>129t+258</td>
<td></td>
</tr>
<tr>
<td>T_2</td>
<td>645t+215</td>
<td>430t+430</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>7504t+3613</td>
<td>3655t+3784</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3.2: Dimension der Matrizen in Abhängigkeit der Anzahl der Zeitschritte t

Bei der in Tabelle 3.2 dargestellten Dimension handelt es sich um die maximal mögliche Anzahl an Zeilen und Spalten. Diese sind von der Wahl der Zeitschritte t abhängig. Die Zeitschritte t sind die untersuchten Stunden; damit kann t zwischen 1 und 8760 variieren. Die Anzahl der Zeilen und Spalten wurde folgendermaßen errechnet: Eine Energieerzeugungsvariable E_{in} hängt beispielsweise vom Ort, dem Kraftwerkstyp und dem Rohstoff und natürlich der Zeit ab, also von den Indexmengen S, P, C und T. Korrekterweise müsste man schreiben $E_{in,S,P,C,T}$, was aus Gründen der Einfachheit und Übersichtlichkeit umgangen wird.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Anzahl Elemente</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>43</td>
<td>Orte im Modell (Ersatzknoten) (engl.: sites)</td>
</tr>
<tr>
<td>P</td>
<td>6</td>
<td>Kraftwerkstypen (engl.: process)</td>
</tr>
<tr>
<td>C</td>
<td>183</td>
<td>Rohstoffe in abhängigkeit des Ortes (engl.: commodities)</td>
</tr>
<tr>
<td>ST</td>
<td>1</td>
<td>Speicher (engl.: storage)</td>
</tr>
<tr>
<td>T</td>
<td>$t \in {1,\ldots,8760}$</td>
<td>Zeitschritte</td>
</tr>
<tr>
<td>CO</td>
<td>1</td>
<td>CO$_2$-Emission</td>
</tr>
</tbody>
</table>

Tabelle 3.3: Indexmengen

Es besteht ein starker Zusammenhang zwischen Rohstoff und Kraftwerkstyp. Ein bestimmter Primärenergieträger wird nur in einer Art von Kraftwerk eingesetzt, beispielsweise Wind in Windenergieanlagen oder Gas in Gasturbinen oder GuD. Umgekehrt kommen für einen Kraftwerkstyp maximal 4 verschiedene Rohstoffe in Betracht. Damit errechnet sich eine maximale Spaltenanzahl für diese Variable aus $|S||P||C|_P|T| = 43 \cdot 6 \cdot 4 \cdot t = 1032t$.

Für eine Transportvariable wurde abgeschätzt, dass ein Ort mit maximal 5 anderen Orten verbunden ist. Damit errechnet sich als Obergrenze für die Anzahl der Transportleitungen
KAPITEL 3. LINEARE OPTIMIERUNGSPROBLEME UND DEREN LÖSUNGSALGORITHMEN

Im Folgenden wird auf die Struktur der einzelnen Matrizen genauer eingegangen. Die Bezeichnungen der Variablen und Restriktionen sind lediglich deshalb als Beschriftung der Matrizen dabei, um zu verdeutlichen, dass ganze Spalten teilweise nur aus Nulleinträgen bestehen.

$$P_1 = \begin{pmatrix} CBASe & EprIn & EprOut & EprOutE & NCapFr & CapPr \\ CBADe & -1_n & 1_n & -1_n & 1_n \end{pmatrix}$$

$$S_1 = \begin{pmatrix} CBASe & EstIn & EstOut & EstOn & NCapCst & CapCst & NCapPist & CapPist & NCapPost & CapPost \\ CBADe & -1_n & 1_n & -1_n & 1_n \end{pmatrix}$$

$$T_1 = \begin{pmatrix} CBASe & EtrIn & EtrOut & NCaptr & Captr \\ CBADe & -1_n & 1_n & -1_n & 1_n \end{pmatrix}$$

$$P_2 = \begin{pmatrix} CBAEn & EBaSe & EBaIm & EBaEn & CaBaPr & CaOnPr & CaCoL & CaCoU & AcCoL & AcCoU & PCPrN & PCPrP \\ \eta_1 & 1_1 & 1_1 & -1_1 & 1_1 & 1_1 & 1_1 & 1_1 & 1_1 & 1_1 & \pm 1_2 & \pm 1_2 \end{pmatrix}$$
Die Darstellung \(X_y \) ist dabei eine Matrix, die in jeder Zeile \(y \)-mal den Wert \(X \) als Eintrag hat. Die Dimension der Matrizen sowie die Lage des Eintrags sind bei dieser Darstellung nicht definiert. Es besteht jedoch ein Zusammenhang zwischen einigen Einträgen. Generell besitzen Teilmatrizen, welche sich in der gleichen Zeile befinden, dieselbe Struktur. Bezeichnet man beispielsweise die Matrizen \(P_{SI} \), \(P_{SO} \) und \(P_{IO} \) mit \(m = 1 \ldots 1032_t \), \(n = 1 \ldots 1032_t \), \(k = 1 \ldots 1032_t \), dann gilt:

\[
P_{SI_{i,j}} = \eta \quad \text{für} \quad i = 1, \ldots m, \quad j = 1, \ldots n \Rightarrow P_{SO_{i,n+j}} = 1 \quad \text{und} \quad P_{IO_{l,n+j}} \neq 1 \quad \forall \quad l = m+1, \ldots, m+k
\]

Die Matrix \(\pm 1_2 \) hat sowohl eine +1 als auch eine −1 in einer Zeile.

Bei den Werten \(\eta, PC, coe \) und \(sup \) handelt es sich um Modellparameter. Mit \(\eta \) wird der Wirkungsgrad eines Prozesses, Transportes oder Speichers bezeichnet. \(coe \) ist der \(CO_2 \)-Emissionskoeffizient. \(sup \) gibt das Windangebot wieder, und \(PC \) steht für „power change“ und stellt die maximale Leistungsänderung eines Kraftwerks von einem auf den nächsten Zeitabschnitt dar.

Wie wir hier sehen, gibt es in der Matrix \(A \) ganze Zeilen mit nur einem Element und keine Zeile, bei der alle Einträge von Null verschieden sind. Bei einer Spaltenanzahl von 3655\(t + 3784 \) für \(t=1,\ldots,8760 \) ist die Matrix nur sehr dünn besetzt.
3.3.2 Vergleich und Zusammenfassung der Algorithmen

Abbildung 3.3: Laufzeit in Abhängigkeit der Zeitschritte

Der Simplex-Algorithmus findet sein Optimum, indem er von Ecke zu Ecke wandert. Bei einem Problem mit \(n \) Variablen und \(m \) Restriktionen definiert ein Polyeder mit maximal \(\binom{n}{m} \) Ecken den Zulässigkeitsbereich. Im schlechtesten Fall bedeutet dies, dass der Algorithmus erst nach \(\binom{n}{m} - 1 \) Iterationen terminiert. Allerdings nur unter der Voraussetzung, dass keine entarteten Lösungen existieren. Da es sich hier aber um ein Problem mit entarteten Lösungen handelt, kann dieser Wert noch weitaus übertroffen werden. Primale Entartung stellt ein Problem für den primalen Simplex-Algorithmus dar, deshalb kann es passieren, dass der duale Simplex-Algorithmus ein weitaus besseres Ergebnis bzgl. der Laufzeit liefert, wenn die dualen Lösungen nicht entartet sind [24].

Das Barrier-Verfahren startet dagegen an einem beliebigen Punkt im Inneren des Zulässigkeitsbereichs und wandert in die Richtung des steilsten Anstiegs (maximale Verbesserung) durch das Innere; damit ist er unabhängig von der Anzahl der Ecken des Zulässigkeitsbereichs definierenden Polyeders und kann zu einer wesentlich geringeren Laufzeit führen. Für \(t = 312 \) werden im Schnitt 300000 Iterationen benötigt.

52
Wahl und Auswertung verschiedener Szenarien

In diesem Kapitel wird zunächst ein Verfahren vorgestellt, nach dem einige Zeitreihen ausgewählt wurden. Mit den hier gewählten Zeitreihen wurden weitere Untersuchungen und Auswertungen durchgeführt, welche im Anschluss beschrieben werden. Durch die Analysen verschiedenster Szenarien sollen folgende Fragen beantwortet werden:

- Spielt es eine Rolle, welche und wie viele Zeitschritte für die Auswertungen gewählt werden?
- Ist es möglich, die CO_2-Emission unter Berücksichtigung der steigenden Stromnachfrage zu reduzieren, und in welchem Maße ist solch eine Reduktion durchführbar?
- Was kostet die Windenergie an den verschiedensten Standorten? Welche Mehrkosten entstehen für den Verbraucher?
- Mit welchen herkömmlichen Kraftwerken können die Schwankungen des Windangebots am kostengünstigsten ausgeglichen werden?
- In welche Richtung verändert sich der Kraftwerksmix bei einem Anstieg der Gaspreise?

Die optimale Kraftwerksinstallation und Fahrweise des Kraftwerkspark hängt stark von den spezifischen Kosten der einzelnen Kraftwerke ab. Deshalb wurden Untersuchungen und Analysen auf Basis der Stromgestehungskosten vorgenommen. Die Stromgestehungskosten sind die Vollkosten eines Kraftwerks umgelegt auf eine Stunde. Sie werden nach folgender Formel berechnet:

Die optimale Kraftwerksinstallation und Fahrweise des Kraftwerkspark hängt stark von den spezifischen Kosten der einzelnen Kraftwerke ab. Deshalb wurden Untersuchungen und Analysen auf Basis der Stromgestehungskosten vorgenommen. Die Stromgestehungskosten sind die Vollkosten eines Kraftwerks umgelegt auf eine Stunde. Sie werden nach folgender Formel berechnet:

\[\text{Stromgestehungskosten} = \frac{K_{\text{Inv}} + K_{\text{Fix}} \cdot \text{Betriebsstunden}}{\text{Betriebsstunden}} \]

Bezeichner

<table>
<thead>
<tr>
<th>Bezeichner</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{Inv}</td>
<td>Investitionskosten/Kapital in [Euro/kW(el)]</td>
</tr>
<tr>
<td>K_{Fix}</td>
<td>Fixkosten/Betriebskosten in [Euro/kW(el)]</td>
</tr>
</tbody>
</table>
KAPITEL 4. WAHL UND AUSWERTUNG VERSCHIEDENER Szenarien

\(K_{Var} \) variable Kosten in [Euro/kWh(el)]
\(K_{Bren} \) Brennstoffkosten in [Euro/kWh(th)]
\(\nu \) Wirkungsgrad
\(A \) Annuität [Euro/kW(el)]
\(V_L \) Völlaststunden [h]
\(E_{CO_2} \) spezifische \(CO_2 \)-Emission in [kgCO_2/kWh(th)]
\(K_{CO_2} \) spezifische \(CO_2 \)-Kosten in [Euro/tCO_2]

Die Stromgestehungskosten \(K_{Strom} \) werden nach folgender Formel berechnet:

\[
K_{Strom} = \frac{A + K_{Fix}}{V_L} + K_{Var} + \frac{K_{Bren}}{\nu} + \frac{E_{CO_2} \cdot K_{CO_2}}{1000}.
\] (4.1)

<table>
<thead>
<tr>
<th>Ort</th>
<th>Installierte Leistung in MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bielefeld</td>
<td>35</td>
</tr>
<tr>
<td>Erfurt</td>
<td>11</td>
</tr>
<tr>
<td>Essen</td>
<td>80</td>
</tr>
<tr>
<td>Frankfurt</td>
<td>12</td>
</tr>
<tr>
<td>Freiburg</td>
<td>250</td>
</tr>
<tr>
<td>Hannover</td>
<td>10</td>
</tr>
<tr>
<td>Karlsruhe</td>
<td>200</td>
</tr>
<tr>
<td>Kassel</td>
<td>32</td>
</tr>
<tr>
<td>Mainz</td>
<td>135</td>
</tr>
<tr>
<td>München</td>
<td>1036</td>
</tr>
<tr>
<td>Regensburg</td>
<td>5</td>
</tr>
<tr>
<td>Saarbrücken</td>
<td>160</td>
</tr>
<tr>
<td>Stuttgart</td>
<td>12</td>
</tr>
<tr>
<td>Ulm</td>
<td>500</td>
</tr>
</tbody>
</table>

Tabelle 4.1: Installierte Wasserkraftwerke

Gleiches gilt für Braunkohlekraftwerke. Aus wirtschaftlicher Sicht ist eine Nutzung der Braunkohle nur an Orten mit natürlichen Rohstoffvorkommen sinnvoll. Ein Transport der Braunkohle an andere Orte wird als unwirtschaftlich erachtet und soll somit vermieden werden. Tabelle 4.2 auf Seite 55 stellt die installierten Braunkohlekraftwerke mit ihrem Wirkungsgrad \(\nu \), der erzielbaren Leistung \(P_d \) und dem durchschnittlichem Bedarf je Stunde \(dem \) dar. Es gibt einige Orte, in denen der durchschnittliche stündliche Bedarf um einiges geringer ist, als die dort mit den vorhandenen Braunkohlekraftwerken erzielbare Leistung, beispielsweise.
KAPITEL 4. WAHL UND AUSWERTUNG VERSCHIEDENER SZENARIEN

<table>
<thead>
<tr>
<th>Ort</th>
<th>P [MW]</th>
<th>ν</th>
<th>P_{el} [MW]</th>
<th>dem [MWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bielefeld</td>
<td>133,33</td>
<td>0,45</td>
<td>60</td>
<td>928</td>
</tr>
<tr>
<td>Cottbus</td>
<td>1022,22</td>
<td>0,45</td>
<td>4600</td>
<td>296</td>
</tr>
<tr>
<td>Dresden</td>
<td>4255,56</td>
<td>0,45</td>
<td>1915</td>
<td>718</td>
</tr>
<tr>
<td>Hannover</td>
<td>1355,56</td>
<td>0,45</td>
<td>610</td>
<td>2510</td>
</tr>
<tr>
<td>Köln</td>
<td>2431,11</td>
<td>0,45</td>
<td>10940</td>
<td>7088</td>
</tr>
<tr>
<td>Leipzig</td>
<td>6455,56</td>
<td>0,45</td>
<td>2905</td>
<td>667</td>
</tr>
<tr>
<td>Regensburg</td>
<td>1144,44</td>
<td>0,45</td>
<td>515</td>
<td>2007</td>
</tr>
</tbody>
</table>

Tabelle 4.2: Installierte Braunkohlekraftwerke

4.1 Ein Auswahlverfahren für die Zeitreihen

Aus rechnertechnischen Gründen ist es leider nicht möglich, jede Stunde des Jahres im Modell zu berücksichtigen. Deswegen müssen bestimmte Stunden ausgewählt werden, welche stellvertretend ein komplettes Jahr simulieren. Um einen Überblick über die einzelnen Stunden zu bekommen, ist es hilfreich, die vorhandenen Winddaten und die zugehörigen Stromnachfragedaten in einer Graphik gegenüberzustellen (Abbildung 4.1, Seite 55). Die x-Achse stellt

Abbildung 4.1: Windangebot versus Stromnachfrage
die Stromnachfrage dar, die y-Achse das Windangebot. Die Stromnachfrage erreicht Werte von 55 GWh bis maximal 117 GWh und das Windangebot von 0 GWh bis maximal 47 GWh. Dieser Bereich wurde in neun Teile untergliedert, um die Verteilung der Stunden zu betrachten (siehe Abbildung 4.2, Seite 56). Man sieht deutliche Häufungspunkte in den Bereichen mit wenig Wind (unter 15 GWh) und niedriger (unter 80 GWh) bzw. mittlerer Nachfrage (zwischen 80 GWh und 100 GWh). Hier liegen 2447 bzw. 2591 Stunden von insgesamt 8760 Stunden, das entspricht einem Anteil von 28% bzw. 30%. Viel Windenergie und eine geringe Nachfrage gibt es nur in den seltensten Fällen (308 Stunden im Jahr).

Abbildung 4.2: Häufigkeitsverteilungen der Stunden unterteilt nach den Kategorien Windangebot und Stromnachfrage

Zum einen stellt sich nun die Frage nach der Auswahl der Stunden bzw. Tage und zum anderen nach der Gewichtung. Dabei sollen einige Bedingungen berücksichtigt werden. Die Auswahl der insgesamt 13 Stunden erfolgte nun nach folgendem Prinzip:

- Eine Stunde aus jedem der neun Bereiche, wobei möglichst darauf geachtet wurde, dass der ganze Tag aus diesem Bereich ist.
- Vier Ausreißer, welche die gesamten Extremsituationen widerspiegeln sollen.

Die Gewichtung wurde nach folgenden Kriterien vorgenommen:

- Es sollte sichergestellt werden, dass die simulierte Nachfrage der tatsächlichen entspricht, bzw. die Abweichung minimal ist; dasselbe gilt für das simulierte und tatsächliche Windangebot
- Die Summe der Gewichte muss der Anzahl der Stunden im gesamten Jahr entsprechen (8760)
Die Höhe der Gewichte sollte so gewählt werden, dass die jeweilige Stunde die Häufigkeit des Auftretens wiedergibt.

Stunden am selben Tag bekommen das gleiche Gewicht.

Im Folgenden bezeichnet

<table>
<thead>
<tr>
<th>Bezeichner</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_i</td>
<td>Stromnachfrage an Tag i</td>
</tr>
<tr>
<td>D</td>
<td>Stromnachfrage im Jahr (hier: 749.693.620 MWh)</td>
</tr>
<tr>
<td>s_i</td>
<td>Windangebot an Tag i</td>
</tr>
<tr>
<td>S</td>
<td>Windangebot im Jahr (hier: 121.384.730 MWh)</td>
</tr>
<tr>
<td>w_i</td>
<td>Gewichtung für Tag i</td>
</tr>
<tr>
<td>k_i</td>
<td>Anzahl Stunden in Kategorie von Tag i</td>
</tr>
<tr>
<td>K</td>
<td>Anzahl Stunden im Jahr (hier: 8760)</td>
</tr>
</tbody>
</table>

Da jede Stunde an einem Tag das gleiche Gewicht bekommen soll, läuft die Optimierung der Gewichte über die Tage. Es stellt sich nun die Frage, wie die Gewichte gewählt werden sollen, damit folgende Gleichung erfüllt ist:

$$\sum_i w_i d_i = D \quad \text{und} \quad \sum_i w_i s_i = S \quad (4.2)$$

Da die Tage so gewählt wurden, dass mindestens 75% der Stunden eines Tages in eine der neun Kategorien einzuordnen sind, wird diese Kategorie für die Berechnung der Gewichte herangezogen. D.h. das Verhältnis der gewichteten Nachfrage an Tag i zur Gesamtnachfrage im Jahr sollte proportional zur Wahrscheinlichkeit des Auftretens der entsprechenden Kategorie sein und gleiches sollte für das Verhältnis des gewichteten Windangebots an Tag i zum Gesamtangebot im Jahr gelten. Dazu werden Hilfsgewichte w_{d_i} für die Nachfrage und w_{s_i} für das Angebot eingeführt.

$$\frac{w_{d_i} d_i}{D} = \frac{k_i}{K} \quad \text{und} \quad \frac{w_{s_i} s_i}{S} = \frac{k_i}{K} \quad \forall i$$

$$\iff w_{d_i} = \frac{k_i D}{K d_i} \quad \text{und} \quad w_{s_i} = \frac{k_i S}{K s_i} \quad \forall i$$

Eine optimale Gewichtung hätte man erreicht, wenn gilt:

$$w_{d_i} = w_{s_i} =: w_i \quad \forall i$$

Und damit wäre Gleichung 4.2 erfüllt. Dies ist aber unmöglich und kann nur näherungsweise erreicht werden.

Beweis:

Angenommen $w_{d_i} = w_{s_i} =: w_i \quad \forall i$, dann gilt $\frac{k_i D}{K d_i} = \frac{k_i S}{k_i s_i} \iff \frac{D}{d_i} = \frac{S}{s_i} \iff \frac{D}{S} = \frac{d_i}{s_i} \iff 6 = \frac{d_i}{s_i}$, also $6s_i = d_i$. Das hieße die Daten wären korreliert und lägen auf einer Geraden, was aber ein Widerspruch ist.
Um weiterhin die Häufigkeit des Auftretens bei der Berechnung der optimalen Gewichte zu berücksichtigen, werden mit Hilfe der Werte w_d und w_s Intervallgrenzen berechnen:

$$l_i = \min(w_{d_i}, w_{s_i}) \quad \text{und} \quad u_i = \max(w_{d_i}, w_{s_i})$$

Das folgende nicht-lineare Optimierungsproblem berechnet die Gewichte für eine Stunde, da jede Stunde eines Tages das gleiche Gewicht erhält und sonst das Problem mit den berechneten Intervallgrenzen nicht lösbar ist, da $\sum_i u_i < K$. Dazu sei $\bar{d}_i = d_i/24$, $\bar{s}_i = s_i/24$ und \bar{w}_i das Gewicht für eine Stunde an Tag i.

$$\min \left| \sum_i \bar{w}_i \bar{d}_i - D/24 \right| + \left| \sum_i \bar{w}_i \bar{s}_i - S/24 \right| \quad \text{unter} \quad \sum_i \bar{w}_i = K/24 \quad \text{(4.4)}$$

$$l_i \leq \bar{w}_i \leq u_i \quad \text{(4.5)}$$

Das Ergebnis liefert die optimalen Gewichte für jede Stunde.

4.2 Vergleich unterschiedlicher Zeitreihen

Ziel dieser Analyse ist es, Aussagen darüber zu treffen, ob es nötig ist, Auswahlregeln obiger Art durchzuführen, um eine realitätsgetreue Situation zu simulieren.

Die Installation von mindestens 22,5 GW, das entspricht 50% der Windenergieanlagen, die im Jahr 2030 als möglich angenommen werden, wurde bei diesen Szenarien erzwungen.

1 Zur Bezeichnung: 24 Tage, die zufällig gewählt wurden
Abbildung 4.3: Stromerzeugung und Kraftwerksinstallation ausgewählter Zeitreihen

Abbildung 4.4: Engpassleitung des Stromnetzes

Es kann allerdings davon ausgegangen werden, dass prozentual nicht allzu große Unterschiede
KAPITEL 4. WAHL UND AUSWERTUNG VERSCHIEDENER Szenarien

Abbildung 4.5: Typische Anteile der Kraftwerke an der Stromerzeugung und Kraftwerkskapazität

in der Installation und Kraftwerksnutzung auftreten. Der Kraftwerkspark besteht im Schnitt aus 20 - 30% Braunkohlekraftwerken, maximal 3% Steinkohlekraftwerken, 13 - 17% GuD, 14 - 34% Gasturbinen, 22 - 26% Kernkraftwerken und 10 - 17% Windenergieanlagen inklusive 1% Laufwasserkraftwerken (Abbildung 4.5, Seite 60).

4.2.1 Zusammenfassung

Es treten große Unterschiede im gewichteten Windangebot und der gewichteten Stromnachfrage auf. Dies sind die Elemente, welche die Optimierung am stärksten beeinflussen; somit ist es notwendig, diese durch eine optimierte Gewichtung zu simulieren, um genaue Aussagen über Kosten, Kapazitäten, Emissionen und Erzeugungs- und Transportmengen treffen zu können.

Die Anzahl der Zeitschritte spielt nur bedingt eine Rolle: Die Simulation wird exakter, wenn eine Stunde aus jedem Bereich (starker Wind, hohe Nachfrage; starker Wind, niedrige Nachfrage etc.) in die Berechnung mit einfließt. Es sollten also mindestens 12 Tage betrachtet werden, die über das Jahr verteilt sind und damit auch jahreszeitliche Schwankungen und extreme Stunden (niedrige Windgeschwindigkeiten, hohe Nachfrage) abgedeckt werden können. Der Vorteil an einer hohen Anzahl an betrachteten Zeitschritten liegt darin, dass die optimale Gewichtung mehr in den Hintergrund tritt und damit durch eine Gleichgewichtung der Zeitschritte bessere Ergebnisse erzielt werden; dazu müsste aber eine wesentlich höhere Anzahl an Zeitschritten betrachtet werden, als es bisher an handelsüblichen Rechnern möglich ist.

4.3 Gaspreisvariation

Bei den nachfolgenden Szenarien wurde die Kraftwerksinstallation anhand der Stromgestehungskosten nachvollzogen.
4.3.1 Bestimmung des Kraftwerkeinsatzes für einen Gaspreis von 0,9 Euro ct/kWh

Abbildung 4.6: Stromgestehungskosten und Kraftwerksinstallationen für einen Gaspreis von 0,9 Euro ct/kWh

Die Gas- und Dampfturbinen (GuD) weisen mit einer Höhe von ca. 2,5 Euro Cent die geringssten Stromgestehungskosten auf und werden demnach zur Deckung der Grundlast (siehe auch Abbildung 4.7 auf Seite 62) herangezogen. Ihre Gesamtleistung beträgt 82,35 GW. Mit der Nutzung der bereits installierten Braunkohle- und Wasserkraftwerke in obiger Höhe wird die Stromnachfrage schon zu 97\%\(^2\) gedeckt. Für die Deckung der Spitzenlast werden Gasturbinen mit einer Gesamtleistung von 63,56 GW installiert; diese weisen nach den GuD mit einer Höhe von ca. 2,8 Euro Cent die geringsten Stromgestehungskosten auf.

In Abbildung 4.6 auf Seite 61 (links) sind die Stromgestehungskosten für 8760 Vollaststunden abgebildet. Die rechte Graphik zeigt die Leistung der Kraftwerke, die das Optimierungsmodell auf der Basis der links dargestellten Kosten errechnet.

In Abbildung 4.7 auf Seite 62 ist die optimale Fahrweise des gesamten Kraftwerksparks auf der Basis der zugrunde gelegten Preise dargestellt.

4.3.2 Bestimmung des Kraftwerkeinsatzes für einen Gaspreis von 1,3 Euro ct/kWh

Für dieses Szenario wurde der Gaspreis von 0,9 Euro ct/kWh auf 1,3 Euro ct/kWh erhöht.

\(^{2}\)inklusive Stromimport aus den umliegenden UCTE-Mitgliedstaaten
Abbildung 4.7: Optimale Fahrweise des Kraftwerksparks für einen Gaspreis von 0,9 Euro ct/kWh

Abbildung 4.8: Stromgestehungskosten der Spitzenlast für einen Gaspreis von 1,3 Euro ct/kWh

Abbildung 4.8 und 4.9 stellt die Stromgestehungskosten in Abhängigkeit der Vollaststunden dar. Windenergieanlagen können maximale Vollaststunden von 3500 Stunden im Jahr
Abbildung 4.9: Stromgestehungskosten der Mittel- und Grundlast für einen Gaspreis von 1,3 Euro ct/kWh

KAPITEL 4. WAHL UND AUSWERTUNG VERSCHIEDENER Szenarien

Abbildung 4.10: Kraftwerksinstallationen für einen Gaspreis von 1,3 Euro ct/kWh

Abbildung 4.11: Optimale Fahrweise des Kraftwerkparks für einen Gaspreis von 1,3 Euro ct/kWh

In Abbildung 4.11 auf Seite 64 ist die optimale Fahrweise des Kraftwerk parks für die ausgewählten Zeitschritte dargestellt. Es wird deutlich, dass Gasturbinen nur als Spitzenlastkraftwerke fungieren, sie werden nur an Tagen mit sehr hoher Nachfrage eingesetzt.

4.3.3 Bestimmung des Kraftwerkeinsatzes für einen Gaspreis von 2,4 Euro ct/kWh

Bei diesem Szenario wurden die Gaspreise auf 2,4 Euro ct je Kilowattstunde erhöht.

Grundlast

Mittellast
KAPITEL 4. WAHL UND AUSWERTUNG VERSCHIEDENER ZENARIEN

Abbildung 4.12: Stromgestehungskosten der Grundlast für einen Gaspreis von 2,4 Euro ct/kWh

Abbildung 4.13: Stromgestehungskosten der Mittellast für einen Gaspreis von 2,4 Euro ct/kWh

Bei den restlichen 2336 Stunden, in welchen die Nachfrage nicht gedeckt ist, handelt es sich
KAPITEL 4. WAHL UND AUSWERTUNG VERSCHIEDENER Szenarien

Abbildung 4.14: Stromgestehungskosten der Spitzenlast für einen Gaspreis von 2,4 Euro ct/kWh

Abbildung 4.15: Kraftwerksinstallationen für einen Gaspreis von 2,4 Euro ct/kWh

um sehr windstille Stunden (vergleiche Abbildung 4.17 auf Seite 68). Das Windangebot ist in Abbildung 4.16 auf Seite 68 mit der jeweiligen Gewichtung dargestellt. Wenn in den Stunden mit nicht gedeckter Nachfrage ein hohes Windangebot herrscht, ist die Gewichtung sehr gering
KAPITEL 4. WAHL UND AUSWERTUNG VERSCHIEDENER Szenarien

Abbildung 4.16: Windangebot der untersuchten Zeitschritte mit der jeweiligen Gewichtung

Abbildung 4.17: Optimale Fahrweise des Kraftwerksparks für einen Gaspreis von 2,4 €ct/kWh

(siehe Stunde 1 bis 49 und 241 bis 265). Die Stunden mit geringer Windgeschwindigkeit dagegen haben eine höhere Gewichtung (vergleiche Stunden 265 bis 312 und 121 bis 145). Das Gewicht gibt die Häufigkeit des Auftretens dieser Stunde im gesamten Jahr an. Die
Installation von Windenergieanlagen ist damit aus Mangel an Windenergie nicht rentabel.

Spitzenlast
Zur Deckung der Spitzenlast ist nach Abbildung 4.14 die Installation von GuD und Gasturbinen von Vorteil; diese weisen die geringsten Stromgestehungskosten auf. Es werden GuD mit einer Leistung von 10 GW installiert; damit werden 8,4 TWh Strom erzeugt. Die restlichen 8,7 TWh werden durch die Installation von 49 GW Gasturbinen erzielt.

4.3.4 Zusammenfassung

Abbildung 4.18: Szenarienvergleich für die Gaspreiserhöhung

4.4 CO$_2$-Emissionsreduzierung

<table>
<thead>
<tr>
<th>Ort</th>
<th>Onshore-WEA [MW]</th>
<th>Offshore-WEA [MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlin</td>
<td>1742</td>
<td></td>
</tr>
<tr>
<td>Bielefeld</td>
<td>663</td>
<td></td>
</tr>
<tr>
<td>Bodensee</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Bremen</td>
<td>3919</td>
<td>8287</td>
</tr>
<tr>
<td>Chemnitz</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>Cottbus</td>
<td>905</td>
<td></td>
</tr>
<tr>
<td>Dresden</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>Erfurt</td>
<td>642</td>
<td></td>
</tr>
<tr>
<td>Essen</td>
<td>585</td>
<td></td>
</tr>
<tr>
<td>Frankfurt</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Freiburg</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Greifswald</td>
<td>675</td>
<td>2918</td>
</tr>
<tr>
<td>Hamburg</td>
<td>1009</td>
<td>8982</td>
</tr>
<tr>
<td>Hannover</td>
<td>1903</td>
<td></td>
</tr>
<tr>
<td>Karlsruhe</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Kassel</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Kiel</td>
<td>1954</td>
<td>4491</td>
</tr>
<tr>
<td>Köln</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>Leipzig</td>
<td>308</td>
<td></td>
</tr>
<tr>
<td>Magdeburg</td>
<td>2410</td>
<td></td>
</tr>
<tr>
<td>Mainz</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>München</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Münster</td>
<td>613</td>
<td></td>
</tr>
<tr>
<td>Nürnberg</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Regensburg</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Rostock</td>
<td>652</td>
<td>876</td>
</tr>
<tr>
<td>Saarbrücken</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>Stuttgart</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Ulm</td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4.3: Installierte Windenergieanlagen

In diesem Abschnitt wurde untersucht, wie weit die CO$_2$-Emission im Ausblick auf das Jahr 2030 reduziert werden kann. Es wurde angenommen, dass bis dahin die Technik und der Ausbau der Windenergieanlagen v.a. auf See soweit ausgereift sind, dass Windenergieanlagen mit einer Gesamtleistung von 45 GW errichtet und genutzt werden können. Die Kapazitäten der Windenergieanlagen können Tabelle 4.4, Seite 70, entnommen werden. Weiterhin wurde an-
genommen, dass Kernkraftwerke mit maximal heutigen Leistungen bei Bedarf zur Verfügung stehen.

<table>
<thead>
<tr>
<th>Ort</th>
<th>Kernkraftwerk [MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamburg</td>
<td>9717,14</td>
</tr>
<tr>
<td>Hannover</td>
<td>3885,71</td>
</tr>
<tr>
<td>Karlsruhe</td>
<td>6714,29</td>
</tr>
<tr>
<td>Mainz</td>
<td>7214,29</td>
</tr>
<tr>
<td>Münster</td>
<td>3800</td>
</tr>
<tr>
<td>Nürnberg</td>
<td>3842,86</td>
</tr>
<tr>
<td>Regensburg</td>
<td>4314,29</td>
</tr>
<tr>
<td>Stuttgart</td>
<td>6300</td>
</tr>
<tr>
<td>Ulm</td>
<td>7342,86</td>
</tr>
</tbody>
</table>

Tabelle 4.4: Installierte Kernkraftwerke

Bei jeden Durchlauf wurde die CO$_2$-Emission durch Herabsetzen der oberen Schranke mehr und mehr beschränkt, bis das Problem unzulässig wurde. Die Ergebnisse sind im nächsten Abschnitt zusammengefasst. Bei einer Kraftwerkwahl ohne CO$_2$-Emissionsbeschränkung wurden 354 Mio t CO$_2$ erzeugt.

<table>
<thead>
<tr>
<th>Energieträger</th>
<th>CO$_2$-Emission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steinkohle</td>
<td>0,3</td>
</tr>
<tr>
<td>Braunkohle</td>
<td>0,33</td>
</tr>
<tr>
<td>Gas</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Tabelle 4.5: CO$_2$-Emission der einzelnen Energieträger

4.4.1 Ergebnisse

Abbildung 4.19: Stromgestehungskosten für einen Gaspreis von 2,4 Euro ct/kWh

Windenergieanlagen sowohl im Onshore- als auch im Offshore-Bereich werden auch ohne CO₂-Beschränkung installiert, allerdings nur mit einer Leistung von zusammen 13 GW. Damit werden 36 TWh Strom erzeugt. Ab einer Beschränkung der CO₂-Emissionsbeschränkung auf 200 Mio t nimmt die Installation und Nutzung von Windenergieanlagen stark zu. Im Offshore-Bereich wird schnell die Obergrenze von ca. 25 GW erreicht. Im Onshore-Bereich wird zunächst mit 11,6 GW begonnen und anschließend auf 18,3 GW und schließlich auf 20 GW mit fortschreitender CO₂-Emissionsbeschränkung aufgestockt.

Die Installation und Nutzung von Steinkohlekraftwerken nimmt ab der ersten Beschränkung stark ab. Bei einer Beschränkung auf 200 Mio t CO₂ beträgt die installierte Leistung nur noch 30,13 GW von ursprünglichen 96,7 GW. Aufgrund hoher Emissionen, wird die Steinkohle ab einer Beschränkung auf 150 Mio t CO₂ nicht mehr zur Stromerzeugung genutzt.

Die Nutzung der GuD nimmt als kostengünstigstes Kraftwerk stark zu. Insbesondere ab einer Beschränkung auf 150 Mio t CO₂ zu großen Anteilen zur Stromerzeugung mit 154 TWh bei. Gasturbinen werden ab einer Beschränkung auf 200 Mio t CO₂ kaum installiert. Sie tragen
KAPITEL 4. WAHL UND AUSWERTUNG VERSCHIEDENER Szenarien

Stromerzeugung in Abhängigkeit der CO₂-Emission

Abbildung 4.20: Stromerzeugung in Abhängigkeit der CO₂-Emission

nur noch mit maximal 0,4 TWh zur Stromerzeugung bei.

Bei den Braunkohlekraftwerken nimmt die Nutzung zunächst zu bis zu einer Beschränkung auf 200 Mio t CO₂ zu und sinkt dann sehr schnell. Bei einer maximalen Beschränkung der CO₂-Emission ist deren Nutzung als stärkster Schadstoff-Emittent nur noch zu 5 TWh möglich. Die Installation der Braunkohlekraftwerke bleibt, wie vorher erwähnt, konstant bei 47,88 GW.

KAPITEL 4. WAHL UND AUSWERTUNG VERSCHIEDENER SZE NARIEN

Abbildung 4.21: Kraftwerksinstallation in Abhängigkeit der CO₂-Emission

Abbildung 4.22: Kraftwerkswahl mit und ohne Beschränkung der CO₂-Emission

Durch eine komplette Auslastung der schadstoffarmen Kraftwerke (Kernkraftwerke, Windenergieanlagen, Wasserkraftwerke) sowie des Imports können gerade mal 57% der Stromerzeugung gedeckt werden. Die Stromerzeugung durch erneuerbare Energien macht hier einen Anteil von 19% (inklusive Wasserkraft) aus. Für die Deckung der restlichen Nachfrage, die im Vollaststundenbereich von ca. 3000 Stunden liegt, weisen die Kohlekraftwerke zwar günstigere Preise auf, werden jedoch wegen ihrer höheren Schadstoffemission nicht für die Stromerzeugung herangezogen. GuD stellen gegenüber den Gasturbinen die rentablere Variante dar;
KAPITEL 4. WAHL UND AUSWERTUNG VERSCHIEDENER Szenarien

Stromerzeugung ohne CO\textsubscript{2}-Emissionsbeschränkung

Abbildung 4.23: Stromerzeugung in Abhängigkeit der CO\textsubscript{2}-Emission

Stromerzeugung mit einer CO\textsubscript{2}-Emission von 100 Mio t

Abbildung 4.23: Stromerzeugung in Abhängigkeit der CO\textsubscript{2}-Emission
damit haben sie einen Anteil von 42% an der Stromerzeugung.

In der Abbildung 4.23 ist die optimale Fahrweise der Kraftwerke für oben dargestellte Szenarien abgebildet. Man sieht hier deutlich (unten), dass die Nutzung des Windes ohne den Einsatz von GuD in keiner Stunde in so hohem Maße zur Verfügung steht, dass sie zur Deckung der Nachfrage ausreicht. Im Gegenzug dazu treten aber Stunden auf, in denen die Windenergieanlagen kaum genutzt werden können (73-100; 217-241).

In Abbildung 4.23 (oben) wird deutlich, dass an einigen wenigen Tagen die Nutzung der Kohlekraftwerke ohne den Einsatz von Spitzenlastkraftwerken vollkommen genügt. So beispielsweise an den Tagen 4 und 10³.

³An der x-Achse angetragen sind die Stunden; damit ist Tag 1 von Stund 1-24, Tag 2 von Stunde 25-48 u.s.w.
KAPITEL 4. WAHL UND AUSWERTUNG VERSCHIEDENER Szenarien

4.5 Variation der WEA

Die angenommene Obergrenze für die Installation von Windenergieanlagen im Jahr 2030 liegt bei 20 GW im Onshore-Bereich und 25 GW im Offshore-Bereich. Es wurden Szenarien ohne Windenergieanlagen mit 10%, 20%, 50% und 100% installierter Leistung berechnet und untersucht. Die Investitionskosten \(K_{\text{Inv}} \), die Fixkosten \(K_{\text{fix}} \) und die variablen Kosten \(K_{\text{var}} \) für die einzelnen Kraftwerke, welche die Basis der Berechnung bilden, können Tabelle 4.6 auf Seite 77 entnommen werden. Bei den Investitionskosten handelt es sich hier um die jährliche Annuität für einen Kalkulationszinssatz von 4%. Die Brennstoffkosten sind in den variablen Kosten bereits enthalten.

<table>
<thead>
<tr>
<th>Kraftwerk</th>
<th>(K_{\text{Inv}}) [Euro/kW]</th>
<th>(K_{\text{fix}}) [Euro/kW]</th>
<th>(K_{\text{var}}) [Euro/kWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steinkohlekraftwerk</td>
<td>86</td>
<td>42</td>
<td>0,013</td>
</tr>
<tr>
<td>Braunkohlekraftwerk</td>
<td>100</td>
<td>51</td>
<td>0,01355</td>
</tr>
<tr>
<td>Gasturbine</td>
<td>23,50</td>
<td>0</td>
<td>0,02</td>
</tr>
<tr>
<td>GuD</td>
<td>34</td>
<td>19</td>
<td>0,022</td>
</tr>
<tr>
<td>WEA-Onshore</td>
<td>58</td>
<td>36</td>
<td>0,003</td>
</tr>
<tr>
<td>WEA-Offshore</td>
<td>76</td>
<td>34</td>
<td>0,0047</td>
</tr>
<tr>
<td>Kernkraftwerk</td>
<td>122</td>
<td>0</td>
<td>0,008</td>
</tr>
</tbody>
</table>

Tabelle 4.6: Investitions-, Fix- und variable Kosten der Kraftwerke

![Stromerzeugung](image1.png)
![Kraftwerksinstallationen](image2.png)

Abbildung 4.25: Stromerzeugung und Kraftwerksinstallation in Abhängigkeit der Windenergie

Die Installation und Nutzung von GuD kann durch die Integration von Windenergie reduziert werden. Die Installation nimmt von 50 GW auf 45 GW ab. Die Stromerzeugung verringert sich von ursprünglichen 136 TWh auf 114 TWh.

Kohlekraftwerke können im geringen Maße durch den Einsatz von Windenergieanlagen reduziert werden. Stein-

nicht mehr installiert. Ohne Windenergie trugen sie noch mit 18 TWh zur Stromerzeugung bei. Die Stromerzeugung in Braunkohlekraftwerken wird von ursprünglichen 185 TWh um 5 TWh reduziert.
Die Nutzung der Kernenergie verringert sich nur um 1 TWh. Eine Deckung der Grund- und Mittellast erfolgt nach wie vor durch Kernkraft, GuD und Braunkohle.

Abbildung 4.26: Gegenüberstellung der CO$_2$-Emission und der Gesamtkosten in Abhängigkeit der Installation von Windenergieanlagen

Abbildung 4.27: Kostenanstieg beim Neubau von 4,5 GW Windleistung in Abhängigkeit bereits genutzter Kapazitäten

4.5.1 Preisbildung im öffentlichen Strommarkt

Die Grenzkosten des teuersten noch von der Nachfrage verlangten Kraftwerks bestimmen in einem öffentlichen Strommarkt den Preis. Da es sich bei der elektrischen Energie um ein nicht lagerbares Gut handelt und sie deshalb direkt im Verbraucherzeitpunkt erzeugt und zur Verfügung gestellt werden muss, orientieren sich die Grenzkosten an den variablen Kosten des Grenzkraftwerkes⁴.

⁴Das Grenzkraftwerk ist das teuerste Kraftwerk, das noch zur Deckung der Nachfrage eingesetzt werden muss; Durch dieses Kraftwerk wird die Höhe des Strompreises bestimmt.
die laufenden Betriebskosten auch deckt. Je nachdem welche Kraftwerke für die Stromerzeugung zur Deckung der Nachfrage in Anspruch genommen werden, schwankt der Preis entsprechend den Grenzkosten der einzelnen Kraftwerke.

Der Strompreis in Hamburg fällt im Gegensatz zu München beim Szenario mit Windenergie bis auf Null. Hier ist durch hohe Windgeschwindigkeiten ein Überangebot an elektrischer Energie vorhanden, so dass die Restnachfrage in den negativen Bereich fällt. Mit Ausnahme der letzten Stunde (entspricht Stunde 273 im Modell) liegen die Strompreise zwischen 0 und 0,1 Euro/kWh in Hamburg und 0,03 bis 0,1 Euro/kWh in München. Beim Szenario ohne Wind liegen die Strompreise in Hamburg und München gleichermaßen im Intervall von 0,03 Euro/kWh 0,06 bei niedriger bis mittlerer Nachfrage und bei hoher Nachfrage bei 0,16 Euro/kWh. Im Raum München ist die Verbraucherlast allerdings geringer als im Raum Hamburg, dadurch ergeben sich Unterschiede im Preisniveau. In München liegt der Strompreis bei einer Nachfrage von knapp 4000 MWh bei 0,058 Euro/kWh in Hamburg bei einer gleichen Nachfrage bei 0,04 Euro/kWh.

\footnote{Der betriebswirtschaftliche Deckungsbeitrag eines Unternehmens entspricht der Differenz aus Umsatz und Kosten des Unternehmens}
Kapazitäten wirtschaftlich profitabler, da hier das durchschnittliche Preisniveau höher ist als bei reichlich vorhandenen Kapazitäten; allerdings können dann Engpässe bei der Versorgung auftreten [26].

4.5.2 Interpretation der marginalen Kosten

Grenzkosten der Nachfrage

![Abbildung 4.29: Verlauf der Grenzkosten der Nachfrage](image)

Die Grenzkosten sind von den installierten Kraftwerkskapazitäten abhängig. Würde ein Anstieg der Nachfrage zu einer gewissen Stunde die Installationen neuer Anlagen nach sich ziehen, stiegen die marginalen Kosten enorm an. Sind bereits genügend Kraftwerkskapazitäten vorhanden, um die Deckung einer erhöhten Nachfrage zu befriedigen, orientieren sich die Grenzkosten in der Größenordnung an den variablen Kosten der Stromerzeugung. Allerdings muss beachtet werden, dass eine Veränderung in der Nutzung der Kraftwerke ebenso die

In Abbildung 4.29 auf Seite 81 sind die Grenzkosten der Nachfrage für einen Modelldurchlauf mit 45 GW installierten Windenergieanlagen, mit 22,5 GW installierten Windenergieanlagen (50% der möglichen Installationen) und ohne Windenergieanlagen je Stunde dargestellt. Im Allgemeinen ist an deren Verlauf der Tagesgang gut erkennbar. Aufgrund einer geringeren Nachfrage in der Nacht sind bestehende Kapazitäten nicht völlig ausgelastet, so dass die kostengünstigste Variante der Stromerzeugung gewählt werden kann und damit die Grenzkosten geringer ausfallen. Sie liegen überwiegend im Intervall von 0,02 bis 0,06 Euro/kWh.

Es besteht ein starker Zusammenhang zwischen dem Windangebot, der Stromnachfrage und den Grenzkosten. Der größte Zusammenhang lässt sich zwischen den Daten der Differenz aus Stromnachfrage und Windangebot (=Restnachfrage) und den Grenzkosten erkennen. Hier liegt der Korrelationskoefzient bei 0,8, d.h. ist die Energienachfrage hoch, aber nur geringe Windenergie vorhanden, welche für die Stromerzeugung genutzt werden kann, steigen die Preise an.
Abbildung 4.30: Zusammenhang von Windangebot, Nachfrage und Grenzkosten

Die Restnachfrage ist in Abbildung 4.30 auf Seite 83 durch die rote Fläche dargestellt. Die orange Fläche spiegelt das Windangebot wider. Folglich deckt die komplette Fläche in dieser Graphik die Nachfrage ab. Das absolute Maximum der Kosten wird in der 273. Stunde erreicht. In dieser Stunde nimmt sowohl die Nachfrage als auch die Restnachfrage ihr Maximum an; deshalb steigen die Kosten auf 2,19 Euro/kWh.

Grenzkosten der Kraftwerkskapazität

An der Höhe der Grenzkosten sieht man deutliche Unterschiede für Küstenregionen oder solche, die mit diesen direkt durch Stromleitungen verbunden sind, und Gebieten im Binnland. Die marginalen Kosten für Küstengebiete belaufen sich auf 20 - 60 Euro/kW und
KAPITEL 4. WAHL UND AUSWERTUNG VERSCHIEDENER Szenarien

Grenzkosten der Kraftwerkskapazität

Abbildung 4.31: Grenzkosten der Onshore-Windenergieanlagen

im Binnenland auf 80 Euro/kW. Damit orientieren sie sich grob an der Annuität, die bei Onshore-Windenergieanlagen bei 58 Euro/kW liegt.

Im Binnenland, wo kaum Windenergie genutzt werden kann, gibt es nur geringe Unterschiede zwischen den Szenarien. Ein weiterer Ausbau in diesen Regionen ist also kostenmäßig nicht von den dort bestehenden Anlagen abhängig, da die Windenergie in den seltensten Fällen
und dann auch nur im minimalen Maße genutzt werden kann. Ein Bau ist also überflüssig und damit auch sehr kostenintensiv.

Bei einem hohen Anteil der Windenergie an der Stromerzeugung ist die optimale Fahrweise der Kraftwerke stark von dieser abhängig. Damit kommt es bei einem weiteren Ausbau zu einer Neustrukturierung der Energieerzeugung, da die Speicherung der Energie in Pumpspeicherkraftwerken sowie ein ausgeprägter Transport von Nord nach Süd stark mit der Nutzung von Windenergie verbunden sind. Damit nehmen die Kosten zu und erreichen eine Höhe von bis zu 60 Euro/kW.

Zusammenfassung

Kapitel 5

Zusammenfassung und Ausblick

Durch die externe Speicherung der Eingabedaten können schnell und einfach Änderungen der elementaren Voraussetzungen vorgenommen werden, ohne dass in die Modellierung selbst eingegriffen werden muss.

von lokalen Gegebenheiten. Je nach genutzter Leistung und örtlichem Windaufkommen unterscheiden sich die Kosten enorm.

Literaturverzeichnis

89

[31] WDR Fernsehen, *CO₂-Einsparung in Deutschland*, www.wdr.de/tv/q21/614.0.phtml, Stand September 2005
