Surface production of H$^+$...
... is based on a low work function Φ
• Reduction of Φ by thin (several ML) cesium layers on source surfaces
• Most relevant H$^+$ production process: Conversion of H on the plasma grid (PG) surface
• Hot and dense plasma in the driver \Rightarrow intense UV radiation impinging the PG

Input of the performed calculations
• Potential energy curves, adiabatic correction
• Benchmarked model can be directly applied for plasma diagnostics

Results presented in [1]:
• No effect of PE
• Amount of photoelectrons (PE) produced by photoelectric effect at PG?
• Influence of PE on the plasma sheath and source performance?

Ro-vibrational Corona models for H$_2$
Excited states of H$_2$ \rightarrow
• Electronic, vibrational and rotational excitation \Rightarrow huge number of levels
• Necessary input data:
 - Level energies
 - Einstein coefficients
 - Excitation cross sections
 - Available ro-vibrationally resolved data base is scarce

Input of the performed calculations
• Potential energy curves, adiabatic correction terms and dipole transition moments from [3]
• Hiri-London factors from [4]

Output: Level energies and Einstein coefficients

Additionally used: Vibrationally resolved cross sections from [5] and [6]

Vibrational and rotational population of electronically excited states
• Population of vibrational levels determined mainly by $T_{\text{rot}}(X^1)$
• Application of vibrationally resolved cross sections essential
• Significant difference between Corona model and FCF scaling
• No ro-vib resolved cross sections available. But: much smaller energy distances of rotational levels
• Levels thermalize with the background gas
• Introduce additional thermalizing collision reaction

Estimation of the influence of PE on the plasma in H$^+$ sources
• Significant amount of photons originate from B$^1\Sigma^-\rightarrow X^1\Sigma^+$ and the atomic Lyman lines
• Only ro-vibrationally resolved models for H$_2$ can precisely calculate the energy distribution of the relevant UV photons
• New Corona models represent first steps towards a ro-vibrationally resolved CR model

Corona models for B$^1\Sigma^-\rightarrow X^1\Sigma^+$ and C$^3\Pi^-$
Good general agreement with the experiment, further benchmarking in preparation
• PE produced at the PG do not influence the plasma sheath and the source performance

References
[4]: A. Hansson et al, J. Mol. Spectrosc. 239 (2006), 182

max-Plank-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany
Tel.: +49 89 3299-1916; E-mail: dirk.wuenderlich@ipp.mpg.de

...on the plasma sheath in hydrogen plasmas
Emission of photoelectrons and their impact

H$^+$ sources for ITER NBI

Simulation of hydrogen emission

Collisonal radiative models available and intensively benchmarked

Hydrogen atom...

Hydrogen molecule...

Ro-vibrational simulation needed for precise determination of photon energy distribution

Results presented in [1]:

No effect of PE

...for H$_2$ continuum $a^3\Sigma^--b^3\Pi$ only, neglecting B$^1\Sigma^--X^1\Sigma^+$ as well as L_{Σ} radiation of H$^+$

• Using (by mistake) a too high quantum efficiency

Variation of T_{gas} and T_{eB}
Clearly visible influence on the structure of the spectrum
• Comparison with experiment can be used for benchmarking the Corona models
• Benchmarked model can be directly applied for plasma diagnostics

Comparison model \Rightarrow experiment: Poster 1.32 (U. Fantz)