Estimation of continuous anthropogenic CO₂ using CO₂, CO, δ¹³C(CO₂) and Δ¹⁴C(CO₂)

S. N. Vardag¹, C. Gerbig², G. Janssens-Maenhout³, and I. Levin¹

¹Institut für Umweltphysik, Heidelberg University, Heidelberg, Germany
²Max Planck Institute for Biogeochemistry, Hans-Knöll-Str.10, 07745 Jena, Germany
³European Commission, Joint Research Centre, Ispra, Via Fermi, 2749, 21027 Ispra, Italy

Received: 3 July 2015 – Accepted: 21 July 2015 – Published: 24 July 2015

Correspondence to: S. N. Vardag (svardag@iup.uni-heidelberg.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

We investigate different methods for estimating anthropogenic CO₂ using modelled continuous atmospheric concentrations of CO₂ alone, as well as CO₂ in combination with the surrogate tracers CO, δ¹³C(CO₂) and Δ¹⁴C(CO₂). These methods are applied at three hypothetical stations representing rural, urban and polluted conditions. We find that independent of the tracer used, an observation-based estimate of continuous anthropogenic CO₂ is not feasible at rural measurement sites due to the low signal to noise ratio of anthropogenic CO₂ estimates at such settings. At urban and polluted sites, potential future continuous Δ¹⁴C(CO₂) measurements with a precision of 5 ‰ or better are most promising for anthropogenic CO₂ determination (precision ca. 10–20 %), but the insensitivity against CO₂ contributions from biofuel emissions may reduce its accuracy in the future. Other tracers, such as δ¹³C(CO₂) and CO could provide an accurate and already available alternative if all CO₂ sources in the catchment area are well characterized with respect to their isotopic signature and CO to anthropogenic CO₂ ratio. We suggest a strategy for calibrating these source characteristics on an annual basis using precise Δ¹⁴C(CO₂) measurements on grab samples. The precision of anthropogenic CO₂ determination using δ¹³C(CO₂) is largely determined by the measurement precision of δ¹³C(CO₂) and CO₂. The precision when using the CO-method is mainly limited by the variation of natural CO sources and CO sinks. At present, continuous anthropogenic CO₂ could be determined using the tracers δ¹³C(CO₂) and/or CO with a precision of about 30 %, a mean bias of about 10 % and without significant diurnal discrepancies. This allows significant improvement, validation and bias reduction of highly resolved emission inventories using atmospheric observation and regional modelling.
1 Introduction

Earth’s carbon budget is strongly influenced by anthropogenic CO₂ emissions into the atmosphere (Keeling et al., 1996; Le Quéré et al., 2015). In order to support studies of the carbon cycle and to quantitatively determine net and gross carbon fluxes, various measurement sites monitor the atmospheric CO₂ mole fraction worldwide. In top-down approaches and in conjunction with atmospheric transport models, these CO₂ measurements are used to infer total CO₂ emissions (Bousquet et al., 2000; Gurney et al., 2002; Peylin et al., 2013), but a differentiation into biogenic, oceanic and anthropogenic CO₂ sources and sinks is not feasible with CO₂ concentration measurements alone. Inverse model studies commonly utilize anthropogenic CO₂ emission inventories to estimate anthropogenic CO₂ sources and are then able to separate anthropogenic from biogenic or oceanic carbon sink and source influences. However, currently available emission inventories exhibit large discrepancies between each other of about 10–40 % at the country level (Peylin et al., 2011), and increase further with decreasing spatial scale (Gurney et al., 2005). These discrepancies suggest that biases may be in the order of about 70–100 % for highly resolved (0.1° × 0.1°) data sets and uncertainties (1σ) of emission inventories may be between 30–150 % (Wang et al., 2013). It is desirable to at least halve the current uncertainties as well as biases of emission inventories in order to better quantify anthropogenic and biogenic CO₂ sinks and sources separately. In this study, we seek to monitor anthropogenic CO₂ contributions continuously with a precision of about 30 % and with biases smaller than 10 %. Note, that we hereafter refer to anthropogenic CO₂ as fuel CO₂ and include non-combustion emissions such as emissions from cement industry or non-energy use of fuels as well as agricultural waste burning. Fossil fuel CO₂ excludes all contributions from biofuel emissions or from agricultural waste burning and thus, excludes short-cycle carbon.

¹⁴C measurements are commonly used as surrogate to differentiate between biogenic and fossil fuel CO₂ contributions in the atmosphere, since fossil fuels do not contain any ¹⁴C, in contrary to biogenic sources (Levin et al., 2003). The ¹⁴C / C isotope
ratio in CO$_2$ is expressed on the $\Delta^{14}C$(CO$_2$) scale, which denotes the deviation of the $^{14}C/C$ ratio in CO$_2$ from a standard material in permil (Stuiver and Polach, 1977). We use the depletion of $\Delta^{14}C$(CO$_2$) at a polluted measurement site relative to $\Delta^{14}C$(CO$_2$) in clean background air to derive quantitative information on the contribution of fossil fuel CO$_2$ to total measured CO$_2$ mole fraction at the polluted site. Radiocarbon (^{14}C) is thus used as quantitative tracer for fossil fuel contributions (Levin et al., 2003; Miller et al., 2012; Turnbull et al., 2015) and is often considered as vital for monitoring fossil fuel emissions (Miller et al., 2012). However, there are a number of problems, when using ^{14}C(CO$_2$) as tracer for anthropogenic emissions: First, precise $\Delta^{14}C$(CO$_2$) measurements from conventional counting or accelerated mass spectrometry (AMS) (better than 2‰) are elaborate and time and cost intensive, thus currently prohibiting the coverage of large periods and large area of such measurements. Attempts have been made to sample ^{14}C(CO$_2$) in the atmosphere with a higher measurement frequency using gas chromatography (GC) coupled to continuous-flow AMS, but the precision in $\Delta^{14}C$(CO$_2$) is lower than for AMS or conventional counting, which also results in less precise fossil fuel CO$_2$ estimates (McIntyre et al., 2013). These studies show, however, that the measurement precision using GC and continuous-flow AMS may reach 5‰ in near future. The benefit of such quasi-continuous but reduced precision fossil fuel CO$_2$ estimates is assessed for the first time in this work.

Second, a complication of applying $\Delta^{14}C$(CO$_2$) measurements for fossil fuel CO$_2$ estimation is that nuclear power plants as well as nuclear fuel reprocessing plants emit ^{14}C(CO$_2$) and can bias regional $\Delta^{14}C$(CO$_2$)-based estimates of fossil fuel contributions if not taken into account (Levin et al., 2003; Graven and Gruber, 2011; Vogel et al., 2013b). Moreover, biofuel CO$_2$ contributions cannot be monitored with $\Delta^{14}C$(CO$_2$) measurements, since they have a similar $\Delta^{14}C$(CO$_2$) signature as the biosphere or may even be elevated in ^{14}C due to the bomb radiocarbon ^{14}C(CO$_2$) stored in wood material. This could become especially problematic, since the use of biofuels is expected to play an increasingly important role for the energy supply in the near future (Coyle, 2007).
Recognizing these shortcomings of $\Delta^{14}C(CO_2)$ as tracer for anthropogenic CO$_2$, it is worth considering other tracers for the estimation of fuel CO$_2$ contributions. Turnbull et al. (2015) have shown that for an urban study area in the middle of the North American continent, the local CO$_2$ offset relative to clean air, ΔCO$_2$, can be used as tracer for fuel CO$_2$ contributions, if all other CO$_2$ sources and sinks, such as from the living biosphere, are negligible. This may be the case for wintertime periods in urban areas when using a background station upwind and close to the urban area. However, we do not expect ΔCO$_2$ to be a quantitative tracer when biospheric fluxes occur within the study area. This is normally the case in spring, summer and autumn.

Since CO is often co-emitted during (incomplete) combustion and since CO can be measured continuously, the CO offset relative to clean air, ΔCO, is frequently used as tracer for fuel CO$_2$ (Meijer et al., 1996; Gamnitzer et al., 2006; Rivier et al., 2006; Turnbull et al., 2006; Levin and Karstens, 2007; Vogel et al., 2010; Newman et al., 2013). If the mean ratio of the CO offset (Δx) relative to the fuel CO$_2$ offset (Δy_F), i.e. $\Delta x / \Delta y_F$: $= \overline{R_F}$, is known and relatively constant, it is principally possible to derive a continuous fuel CO$_2$ estimate from Δx measurements by dividing ΔCO by $\overline{R_F}$. The overbar shall emphasize that we use one averaged value for R_F, even though it actually varies with the relative fraction of the different emission groups in a varying catchment area of the measurement site. CO is also produced during oxidation of methane and hydrocarbons, particularly during summer. The main sinks of CO are photo-oxidation and reaction with OH (Parrish et al., 1993) as well as soil uptake (Inman et al., 1971), leading to a rather short atmospheric lifetime of CO of several weeks in summer (Prather et al., 2011). Natural CO sinks and sources vary with time and contributions of different fuel CO$_2$ sources, such as emissions from energy production, road traffic, residential heating and industrial emissions, with different emission ratios (ΔCO / ΔCO$_2$), vary during day, season as well as over longer time periods, in which combustion technologies, processes and procedures change. Therefore, the mean $\overline{R_F}$ ($= \Delta x / \Delta y_F$) is a function of space and time and might needs to be calibrated using e.g. $\Delta^{14}C(CO_2)$ measurements.
(Levin and Karstens, 2007). If $\overline{R_F}$ does not vary significantly within the time scale of the calibration, it may then allow to estimate continuous fuel CO$_2$. However, if $\overline{R_F}$ varies strongly on time scales of less than the calibration interval, further corrections (e.g. diurnal or seasonal) may be necessary (Vogel et al., 2010). These corrections are only reliable if $\overline{R_F}$ variations are systematic. Since this is not always the case, additional or other continuous tracers may need to be considered to improve fuel CO$_2$ estimates.

One of these tracers may be δ^{13}C(CO$_2$), since fuel emissions tend to be more depleted in 13CO$_2$ than fluxes from the biosphere. Zondervan and Meijer (1996), Pataki et al. (2006) and Djuricin et al. (2010) have attempted to estimate fuel CO$_2$ emissions in specific case studies using mass spectrometric measurements of δ^{13}C(CO$_2$), in addition to Δ^{14}C(CO$_2$) measurements. Recently, new optical instrumentation allows measuring δ^{13}C(CO$_2$) continuously (e.g. Esler et al., 2000; Tuzson et al., 2011; Hammer et al., 2013; Vogel et al., 2013a) and thus open the door for δ^{13}C(CO$_2$) as a continuous tracer for fuel CO$_2$ contributions. In order to use δ^{13}C(CO$_2$) measurements at an urban site, the mean isotopic signature of the sources (and sinks) in the catchment area of the site, $\overline{\delta_F}$, must be known, relatively constant and potentially requires calibration (as discussed for CO). Further, the signature of fuel CO$_2$ emissions must be significantly different from biospheric CO$_2$ emissions in order to differentiate properly between them.

In many settings, we will exhibit neither a constant ratio $\overline{R_F}$ nor a constant fuel source signature $\overline{\delta_F}$. This will especially be the case if multiple sources (i) with different emission ratios $\overline{R_{F,i}}$ and different fuel δ^{13}C(CO$_2$) source signatures $\overline{\delta_{F,i}}$ are located in the catchment area of the measurement site. In these cases, it may be advantageous to divide the fuel emissions into (two) different groups. CO will only be an adequate tracer for a certain emission group, if this group has a significantly different ratio $\overline{R_F}$ (=$\Delta x / \Delta y_F$) than any other emission group. In analogy, δ^{13}C(CO$_2$) will only be a good tracer for a certain emission group if the group’s emissions are significantly more depleted or enriched with respect to the other groups. If we divide all
fuel CO₂ contributions into two emission groups, of which one is well constrained by CO and the other by δ¹³C(CO₂), we could then join both tracers to determine the total fuel CO₂ contributions. In several published studies, the CO mole fraction has been used as a tracer for traffic contributions only (e.g. Schmidt et al., 2014), since these often exhibit high ∆CO / ∆CO₂ ratios. However, in some regions, emission inventories (e.g. Landesamt für Umwelt, Messungen und Naturschutz Baden-Württemberg, available at: http://www.ekat.baden-wuerttemberg.de/) depict that the emission ratio \(R_{tr} (= \Delta x / \Delta y_{tr}) \) has been decreasing during the last decade, degrading CO as a tracer for traffic contributions. At the same time, diesel/petrol for vehicle is blended with an increasing amount of biodiesel/biogasoline (to the order of 5%). More in general, emission inventories show that biofuel CO₂ emissions have increased significantly and that the emission ratio of biofuel emissions \(R_{bf} (= \Delta x / \Delta y_{bf}) \) is very high, qualifying CO as a tracer for biofuel contributions. Later we examine separately, if these two emission groups, traffic and biofuel emissions, could possibly be traced with CO.

In the present study, we investigate how continuous CO₂, CO, δ¹³C(CO₂) and ∆¹⁴C(CO₂) measurements as well as the combination of these tracers could be used to estimate continuous fuel CO₂. In order to validate how precisely and accurately we may be able to determine fuel CO₂ using continuous (hourly) CO₂, CO, δ¹³C(CO₂) and ∆¹⁴C(CO₂) as tracers, we use a modelled data set, in which, contrary to measured data sets, CO₂ contributions from all source categories, i.e. the biosphere, from fossil fuel and from biofuel burning are traced separately. Using the modelled mole fractions and isotope records of CO₂, CO, δ¹³C(CO₂) and ∆¹⁴C(CO₂), we estimate the total fuel CO₂ offset using these tracers. We then discuss advantages and disadvantages of the different tracers. Using a modelled data set has the additional advantage, that isotopic signatures, emission ratios of different emission sectors etc. can be varied in order to also investigate the sensitivity of these source characteristics on the fuel CO₂ estimate. This enables us to judge how accurately the sources in the catchment of the measurement site need to be characterized for a certain required accuracy of fuel CO₂, and
if a calibration, using e.g. precise Δ^{14}C(CO$_2$) measurements, is advantageous. In the course of this, we also compare different possible sampling strategies for calibration. We further assess, which measurement precision is needed to achieve continuous fuel CO$_2$ estimates with sufficient precision. Additionally, we investigate the diurnal cycle of the tracer-based continuous fuel CO$_2$ estimates and compare them to the modelled reference fuel CO$_2$ in order to determine if we can reproduce the diurnal cycle correctly and hence, if we would introduce significant biases when using e.g. only afternoon values of fuel CO$_2$ in inverse models. We discuss the model results for a typical European urban (modelled mean fuel CO$_2$ offset: 16 µmol mol$^{-1}$), rural (modelled mean fuel CO$_2$ offset: 3 µmol mol$^{-1}$) and polluted (modelled mean fuel CO$_2$ offset: 25 µmol mol$^{-1}$) site and assess, if an estimation of continuous fuel CO$_2$ is possible at all sites. If this is the case, we evaluate which may be the best tracer or the best monitoring station. Finally, we give an outlook on how to apply this model study to a real measured data set.

Our investigations aim at providing the basis for the decision if continuous measurements of CO$_2$, CO, δ^{13}C(CO$_2$) and Δ^{14}C(CO$_2$) would be worth to be performed at a particular measurement station in order to quantitatively and precisely estimate continuous fuel CO$_2$ within a measurement network.

2 The modelling framework

For the study’s purpose of theoretically assessing precision and accuracy of different tracer configurations for fuel CO$_2$ estimation, it is only of secondary importance that modelled time series are correct, but it is mainly important that the model provides a reasonably realistic data set. In this study, we simulate mole fractions and isotopic records for the Heidelberg site (49°3’ N, 8°4’ E, urban, see Levin et al., 2003) and for two non-existing stations Gartow (53°0’ N, 11°3’ E, rural) and Berlin (52°5’ N, 13°6’ E, polluted) for the year 2012. All three stations may potentially be part of the German ICOS atmospheric network (see http://www.icos-infrastructure.eu/).
We used the Stochastic Time-Inverted Langrangian Particle Transport (STILT) model (Lin et al., 2003) as well as pre-set source and sink distributions (see below). To simulate the atmospheric transport we used meteorological fields from the European Center for Medium-Range Weather Forecast with 3-hourly temporal resolution and 25 km × 25 km spatial resolution (Trusilova et al., 2010). By emitting 100 particles at the measurement location and inverting the meteorological fields in time, it is possible to follow the particles backward in time and track the location of their original emission. The sensitivity of the measured mole fraction at the measurement site to emissions located upstream is called footprint. The particles are traced back in time until they leave the model domain, which extends from 16° W to 36° E and from 32° N to 74° N. Initial/lateral CO₂ tracer boundary conditions for CO₂ tracer far-field mole fractions are taken from analyzed CO₂ fields, generated by the global atmospheric tracer transport model, TM3 (Heimann and Körner, 2003), based on optimized fluxes (Rödenbeck, 2005) transported at a spatial resolution of 4° × 5° with 19 vertical levels, and a temporal resolution of 6 h (s96 v3.6, http://www.bgc-jena.mpg.de/~christian.roedenbeck/download-CO2-3D/). The dynamic grid resolution in STILT is 1/12° × 1/8° (about 10 km × 10 km) close to the measurement location, and increases further away (Gerbig et al., 2006). The so-called footprint is multiplied with the biospheric and anthropogenic surface emissions to estimate the mole fraction change at the measurement site.

For the biospheric CO₂ fluxes, we use the vegetation photosynthesis and respiration model (VPRM, Mahadevan et al., 2008). The Net Ecosystem Exchange is calculated for different biome types based on SYNMAP (Jung et al., 2006) using land surface water index and enhanced vegetation index from MODIS (http://modis.gsfc.nasa.gov/) satellite data, as well as air temperature and short wave radiation from ECMWF. VPRM are computed at 1/12° × 1/8° resolution with hourly temporal resolution. We neglect biospheric CO and CH₄ fluxes in the model. CO destruction by OH and CO production via CH₄ oxidation is taken into account (Gerbig et al., 2003). However, CO production via...
non-methane hydrocarbon (NMHC) oxidation and CO uptake by soils (Conrad, 1996) are not included in the model.

Anthropogenic emissions of CO\textsubscript{2}, CO and CH\textsubscript{4} are from a preliminary version of the EDGARv4.3 emission inventory (EC-JRC/PBL, 2015), also used for the UNEP Emissions Gap Report (Rogelj et al., 2014) for the base year 2010 and have a spatial resolution of 0.1° × 0.1°. The emissions are further separated following IPCC emission categories, which are again separated in fuel types (i.e. hard coal, brown coal, oil, natural gas, derived gas, biofuels etc.). To extrapolate the emissions to the year 2012 specifically we follow the approach taken in the COFFEE dataset (CO\textsubscript{2} release and Oxygen uptake from Fossil Fuel Emission Estimate) (Steinbach et al., 2011) and use specific temporal factors (seasonal, weekly and daily cycles) (Denier van der Gon et al., 2011) for different emission categories, and apply country and fuel type specific year-to-year changes at national level taken from the BP statistical review of World Energy 2014 (available at: http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy.html).

The STILT model calculates the total trace gas mole fraction of CO\textsubscript{2} (\(y_{\text{tot}}\)) at the measurement site as the sum of a background mole fraction \(y_{\text{bg}}\), contributions from the biosphere \(y_{\text{bio}}\), from different fossil fuel types \(y_{\text{ff},i}\) and different biofuel types \(y_{\text{bf},j}\):

\[
y_{\text{tot}} = y_{\text{bg}} + y_{\text{bio}} + \sum_{i} y_{\text{ff},i} + \sum_{j} y_{\text{bf},j}
\] (1)

The last two terms of Eq. (1) form the total fuel CO\textsubscript{2} (\(y_{\text{F}}\)). We can associate a total isotopic \(\delta^{13}\text{C}(\text{CO}_2) (\delta_{\text{tot}})\) record to the total CO\textsubscript{2} record following Mook (2001):

\[
\delta_{\text{tot}} y_{\text{tot}} \approx \delta_{\text{bg}} y_{\text{bg}} + \delta_{\text{bio}} y_{\text{bio}} + \sum_{i} \delta_{\text{ff},i} y_{\text{ff},i} + \sum_{j} \delta_{\text{bf},j} y_{\text{bf},j}
\] (2)

The isotopic signatures attributed to the different emission types, e.g. \(\delta_{\text{ff},i}\) and \(\delta_{\text{bio}}\) are listed in Table 1 and are independent on the emission category. Note that we do not implement a diurnal cycle into the biospheric signature.
The total CO mole fraction \(x_{\text{tot}} \) can be balanced in analogy to \(\text{CO}_2 \), but we neglect biospheric CO contributions as they are expected to be small:

\[
x_{\text{tot}} = x'_{\text{bg}} + \sum_i x_{\text{ff},i} + \sum_j x_{\text{bf},j} = x'_{\text{bg}} + \sum_i \frac{y_{\text{ff},i}}{R_{\text{ff},i}} + \sum_j \frac{y_{\text{bf},j}}{R_{\text{bf},j}} \quad (3)
\]

The emission ratios \(R_{\text{ff},i} \) (\(= \Delta x / \Delta y_{\text{ff},i} \)) depend on the emission category as well as fuel type and are determined by the emission characteristics (implied emission factors) given in EDGARv4.3. The footprint-weighted mean ratios, e.g. \(R_F \), are listed in Table A1 for Heidelberg. For the background values \(\Delta^{14}\text{C}_{\text{bg}}, y_{\text{bg}}, \delta_{\text{bg}} \) and \(x'_{\text{bg}} \), we use those mole fractions where CH\(_4\) mole fractions reach a minimum value within two days. This is mainly the case in the afternoon when vertical mixing is strongest (for more details on the choice of background see Appendix A2). Note, that the CO background \(x'_{\text{bg}} \) is denoted with a prime, since it has been corrected for chemical reactions with OH (sink) and for production from oxidation of CH\(_4\) by applying a first-order chemical reaction on hourly OH and CH\(_4\) fields. The contributions of fossil fuel and biofuel CO, are, however, not corrected for these chemical reactions in the model, since the CO, which is released in the footprint area of the measurement site typically travels only a fraction of its actual life-time until arriving at the measurement site.

The \(\Delta^{14}\text{C} (\text{CO}_2) \) \((\Delta^{14}\text{C}_{\text{tot}}) \) balance is also simulated and follows:

\[
y_{\text{tot}} \left(\Delta^{14}\text{C}_{\text{tot}} + 1 \right) \approx y_{\text{bg}} \left(\Delta^{14}\text{C}_{\text{bg}} + 1 \right) + y_{\text{bio}} \left(\Delta^{14}\text{C}_{\text{bio}} + 1 \right) + \sum_i y_{\text{ff},i} \left(\Delta^{14}\text{C}_{\text{ff},i} + 1 \right)
\]

\[
+ \sum_j y_{\text{bf},j} \left(\Delta^{14}\text{C}_{\text{bf},j} + 1 \right) \quad (4)
\]

With \(\Delta^{14}\text{C}_{\text{bio}}, \Delta^{14}\text{C}_{\text{bf},j} \) and \(\Delta^{14}\text{C}_{\text{ff},i} \) listed in Table A1 and CO\(_2\) mole fractions from model results. As all fossil fuel CO\(_2\) sources are void of \(^{14}\text{C} (\text{CO}_2)\), fuel CO\(_2\) contributions are separated into fossil fuel and biofuel contributions.
In the following, we use six different tracers or tracer combinations to derive continuous fuel CO\textsubscript{2} (see Table 2).

The formal derivation of the continuous fuel CO\textsubscript{2} estimate from these six different tracers or tracer combinations can be found in the Appendix A1, where the different targeted emission groups (fuel CO\textsubscript{2}, fossil fuel CO\textsubscript{2}, fuel CO\textsubscript{2} without traffic, traffic CO\textsubscript{2}, biofuel CO\textsubscript{2} and biospheric CO\textsubscript{2}) are also listed and characterized in Table A1.

3 Results

We now investigate how well the different tracers perform at a typical urban, rural and polluted measurement site. First, we will discuss the upper limit of precision and accuracy of fuel CO\textsubscript{2} estimation using these tracers when assuming all parameters (e.g. \(\delta_F\)) are known at every time. We then investigate how the use of averaged accurate parameters and variables affects the fuel CO\textsubscript{2} estimate. Next, we also perform a sensitivity analysis to identify, which parameters and variables need to be known and at which precision and accuracy for fuel CO\textsubscript{2} estimation with satisfying accuracy (of e.g. smaller than 10 \%). Finally, we discuss the diurnal variation of fuel CO\textsubscript{2} and include a realistic measurement uncertainty into our considerations.

3.1 High (hourly) resolution of parameters and variables

The integrated footprint-weighted parameters (e.g. \(R_F, R_{tr}, R_{bf}, \delta_F, \delta_{ff}, \delta_{bf}, \delta_{tr}, \delta_{F-tr}, m_{bf}\) and \(m_{tr}\)) are needed for the estimation of fuel CO\textsubscript{2} using the different tracers. However, they are dependent on the emission characteristics of the sources in the catchment area of the measurement site. If e.g. the mean isotopic signature of fuel CO\textsubscript{2} sources in the catchment area varies or if the catchment area itself varies, the integrated footprint-weighted parameter \(\delta_F\) will change. Typically, the integrated footprint-weighted parameters vary on time scales of hours, weeks, months and years. If, for a given measurement site, we could determine these parameters on the time scale of 20192.
hours (which is the temporal resolution of our model), we would be able to estimate fuel CO$_2$ entirely correctly (difference of estimated and modelled fuel CO$_2$ would be zero) using CO and $\delta^{13}C$(CO$_2$) or any combination of these tracers.

In contrast to methods using CO and/or $\delta^{13}C$(CO$_2$), CO$_2$-based estimations would overestimate fuel CO$_2$, when biospheric CO$_2$ contributions are positive (which will often be the case during night time and in winter) and underestimate fuel CO$_2$ when the biospheric CO$_2$ is negative (which may be the case during daytime in summer). This would lead to a median overestimation of fuel CO$_2$ by about 5% (Berlin) to 50% (Gartow), depending on the proportion of biospheric CO$_2$ to total CO$_2$ at the location.

As $\Delta^{14}C$(CO$_2$) is not sensitive to biofuel contributions, $\Delta^{14}C$(CO$_2$) based fuel CO$_2$ estimates will underestimate the fuel CO$_2$ contributions approximately by the amount of biofuel CO$_2$ to the regional CO$_2$ concentration offset. For our model runs, this leads to a median underestimation of about 5% (Berlin) to 10% (Heidelberg and Gartow) dependent on the share of biofuel CO$_2$ at the measurement site. Note, that we did not include any ^{14}C(CO$_2$) emissions from nearby nuclear power plants or nuclear fuel reprocessing plants into the considerations, which would potentially mask the depletion of fuel CO$_2$ contributions. However, we will discuss possible effects in Sect. 5.

Normally it will not be possible to determine parameters such as \overline{R}_F, \overline{R}_tr, \overline{R}_bf, $\overline{\delta}_F$, $\overline{\delta}_ff$, $\overline{\delta}_bf$, $\overline{\delta}_tr$, $\overline{\delta}_{F-tr}$, \overline{m}_{bf} and \overline{m}_{tr} with hourly resolution. We, thus, investigate how using (monthly) median values of these parameters may influence the fuel CO$_2$ estimates.

3.2 Low (monthly) resolution of parameters and variables

We now only use the monthly median value of the footprint-weighted parameters \overline{R}_F, \overline{R}_tr, \overline{R}_bf, $\overline{\delta}_F$, $\overline{\delta}_ff$, $\overline{\delta}_bf$, $\overline{\delta}_tr$, $\overline{\delta}_{F-tr}$, \overline{m}_{bf} and \overline{m}_{tr} to estimate fuel CO$_2$. Note, that we use the median instead of the mean value for the footprint-weighted parameters, since the median is less sensitive to outliers. Using only monthly median values will introduce sub-monthly inaccuracies into the fuel CO$_2$ estimate since the footprint-weighted parameters vary on sub-monthly timescales. The variability of the discrepancy be-
The mean difference between the modelled and tracer-based fuel CO\textsubscript{2} estimate provides a measure for the accuracy of the fuel CO\textsubscript{2} determination with the different tracer methods. In principle, it is not correct to assume that, when using the correct median
values for R_F, R_{tr}, R_{bf}, δ_F, δ_{ff}, δ_{bf}, δ_{tr} and δ_{F-tr}, no median bias will be introduced into the CO$_2$ estimate. The reason is that the values for R_F, R_{tr}, R_{bf}, δ_F, δ_{ff}, δ_{bf}, δ_{tr} and δ_{F-tr} are calculated on an hourly basis independent on the total fuel CO$_2$ value (y_F) at that time and are then averaged monthly. However, if y_F and R_F, R_{tr}, R_{bf}, δ_F, δ_{ff}, δ_{bf}, δ_{tr} and δ_{F-tr} are correlated, sub-monthly over- and underestimation of y_F due to sub-monthly variation of R_F, R_{tr}, R_{bf}, δ_F, δ_{ff}, δ_{bf}, δ_{tr}, δ_{bio} and δ_{F-tr} will not average out necessarily. An analysis of the bias introduced when using monthly median footprint-weighted parameters is therefore vital. The standard deviations of the Gaussian fits to the difference distributions provide a measure for the precision of fuel CO$_2$ determination.

All methods using δ^{13}C(CO$_2$) (Figs. 1c–e, 2c–e and 3c–e) are able to estimate fuel CO$_2$ without significant systematic biases. Mean and median differences of modelled and estimated fuel CO$_2$ are within 10% of the mean annual fuel CO$_2$ signal. The benefit when using CO additionally to δ^{13}C(CO$_2$) is very small, which is due to the fact that traffic or biofuel CO$_2$ contributions are not very distinct with respect to their isotopic signature or their CO/CO$_2$ emission ratio from the other fuel CO$_2$ contributions for our model settings (see Table A1). When using CO as tracer for fuel CO$_2$ (Figs. 1b, 2b and 3b) the standard deviation of the difference between the estimated and real fuel CO$_2$ value is slightly larger than when using δ^{13}C(CO$_2$). The reason is the large sub-monthly variation of footprint-weighted R_F in our modelled data.

Principally, the standard deviation of the different tracer distributions is about 40–70% larger at the polluted station than at urban and rural stations. However, we found that the variation of the footprint-weighted parameters such as R_F, R_{tr}, R_{bf}, δ_F, δ_{ff}, δ_{bf}, δ_{tr}, δ_{F-tr}, δ_{bio}, m_{bf} and m_{tr} is largest in rural areas and smallest in polluted areas, which is probably due to the fact that in polluted catchment areas the many polluters homogenizes partly, whereas at cleaner sites the emissions of the few different polluters are temporally and spatially distinct. Hence, the larger spread of the fuel CO$_2$ estimate at polluted stations is not the result of larger source heterogeneity, but is due to the larger absolute signals (and with that larger absolute variations) of fuel CO$_2$ in the catchment.
area of more polluted sites. Only CO\textsubscript{2} as tracer for fuel CO\textsubscript{2} shows less variability at Berlin, which is due to smaller contribution from the biosphere in the catchment area of the polluted measurement site. However, the relative variability (\(=1\sigma/\text{mean}(y_F)\)) is significantly higher in Gartow (e.g. \(\delta^{13}\text{C}-\text{method}: 20\%\)) than it is in Heidelberg or Berlin (both 4\%).

We have found that only small median differences occur when using \(\delta^{13}\text{C}(\text{CO}_2)\) or CO as tracer for fuel CO\textsubscript{2}, but this finding is only valid under the premise, that the median values of all input and footprint-weighted parameters are known. If one or more of the parameters or variables are assigned incorrectly, this will lead to a systematic error of the fuel CO\textsubscript{2} estimate. The sensitivity of this misassignment for the different parameters and variables will be assessed in the next chapter.

3.3 Sensitivity of fuel CO\textsubscript{2} estimates on misassigned parameters and variables

We have investigated how well we are able to estimate fuel CO\textsubscript{2} in a setting in which e.g. the monthly averages of all parameters are perfectly well known, but temporally varying on shorter time scale. However, since, in reality, parameters such as \(\delta_F\) or \(R_F\) are only approximately known, we need to investigate how a misassignment of one of these parameters will influence fuel CO\textsubscript{2} estimates. This will provide information on how well certain parameters and variables need to be assigned for a fuel CO\textsubscript{2} estimate with targeted accuracy. For this purpose, we misassign one parameter and, at the same time, keep the other parameters at their correct value. We then determine how the fuel CO\textsubscript{2} estimate changes (y axis in Fig. 4) when the misassignment of the parameter (x axis) varies. The sensitivities of all methods to the most important parameters and variables are shown in Fig. 4 exemplary for the urban site Heidelberg. We have done this analysis for the parameters total CO\textsubscript{2} \(y_{\text{tot}}\) (Fig. 4a), \(\delta^{13}\text{C}_{\text{tot}}\) (Fig. 4b), background CO\textsubscript{2} \(y_{\text{bg}}\) (Fig. 4c), \(\delta^{13}\text{C}_{\text{bg}}\) (Fig. 4d), \(\delta_F\) (Fig. 4e), \(\delta_{\text{bio}}\) (Fig. 4f), \(\delta_{\text{bf}}\) (Fig. 4g), \(\delta_{\text{tr}}\) (Fig. 4h), CO offset \(x\) (Fig. 4i), \(m_{\text{bf}}\), \(m_{\text{tr}}\) (Fig. 4j), \(\overline{R}_{\text{tr}}\), \(\overline{R}_{\text{bf}}\) (Fig. 4k), \(\overline{R}_F\) (Fig. 4l), \(\Delta^{14}\text{C}_{\text{tot}}\) (Fig. 4m), \(\Delta^{14}\text{C}_{\text{bg}}\) (Fig. 4n), \(\Delta^{14}\text{C}_{\text{bio}}\) (Fig. 4o) and \(\Delta^{14}\text{C}_{\text{bf}}\) (Fig. 4p). The variation of these values...
was chosen so that the range includes the typical measurement precision for CO$_{2\text{meas}}$, CO$_{2\text{bg}}$, δ_{bg}, δ_{meas}, $\Delta^{14}\text{C}_{\text{bg}}$ and $\Delta^{14}\text{C}_{\text{meas}}$. The variation of the CO offset was chosen so that it displays the measurement precision of total CO and of the background CO, but also realistic contributions from natural CO sources and sinks. For the parameters R_F, R_{tr}, R_{bf}, δ_F, δ_{bf}, δ_{tr}, δ_{bio}, δ_{F-tr}, m_{bf}, m_{tr}, $\Delta^{14}\text{C}_{\text{bio}}$ and $\Delta^{14}\text{C}_{bf}$, we selected realistic ranges of sub-monthly parameter variation.

The error bars given on the right hand side of Fig. 4 show the interquartile ranges (IQR) and stem from the sub-monthly variability of δ_F, R_F, m_{bf} and m_{tr}, which was discussed in Sect. 3.2. One can directly identify critical parameters and variables, for which the difference between the modelled and estimated fuel CO$_2$ (y axis) changes significantly with increasing misassignment of parameters/variables (x axis).

3.3.1 Sensitivity of CO$_2$-only method

We confirm that the CO$_2$-only method (green in Fig. 4) is insensitive to the variation of the displayed parameters/variables. However, the large IQR of the CO$_2$-only method, as well as the median overestimation of fuel CO$_2$ by about 2.4 µmol mol$^{-1}$ disqualifies this method at an urban site with non-negligible biospheric influences.

3.3.2 Sensitivity of CO method

Critical parameters/variables of the CO method (orange in Fig. 4) are the CO offset ΔCO (Fig. 4i), as well as the ratio $\overline{R_F} (= \Delta x / y_F)$ (Fig. 4l). In practise, the CO offset is derived by subtracting the CO background as well as natural CO source and sink contributions from the total measured CO mole fraction. Typical fuel CO offsets are in the order of 40 nmol mol$^{-1}$. In our model we have not included natural CO sources and sinks, but in practise, the uncertainty of the CO mole fraction measurement and of the natural CO contributions will add to the uncertainty of the fuel CO$_2$ estimate. Assuming e.g. a CO background, which is 15 nmol mol$^{-1}$ too large, or assuming an additional...
sink resulting in a 15 nmol mol\(^{-1}\) lower CO background, which may be a realistic diurnal variation of natural CO variation (Gros et al., 2002; Vogel, 2010), would lead to a significant overestimation of fuel CO\(_2\) of about 4 µmol mol\(^{-1}\) (median). Therefore, for a real data set, it is vital to determine the natural CO contributions and sinks (also soil sinks) using chemistry models or calibration with e.g. \(\Delta^{14}\)C(CO\(_2\)) (see Sect. 4). In Heidelberg, the median ratio \(\bar{R}_F\) is about 3.7 (nmol mol\(^{-1}\)) (µmol mol\(^{-1}\))\(^{-1}\) and shows a rather large variation standard deviation of 2.3 (nmol mol\(^{-1}\)) (µmol mol\(^{-1}\))\(^{-1}\). Figure 4l shows, that such a variation of \(\bar{R}_F\) contributes significantly to the imprecision of fuel CO\(_2\) in the CO-method. Also, the correct determination of \(\bar{R}_F\) is vital for accurate fuel CO\(_2\) estimates using CO.

3.3.3 Sensitivity of methods using \(\delta^{13}\)C(CO\(_2\))

The sensitivities of fuel CO\(_2\) estimates using \(\delta^{13}\)C(CO\(_2\)) (red and black in Fig. 4) and combinations of \(\delta^{13}\)C(CO\(_2\)) and CO are rather similar (blue in Fig. 4). Note that the sensitivity on \(\delta_{bg}\) or \(\delta_{tot}\) is plotted when keeping \(y_{bg}\) and \(y_{tot}\) constant. Changing the \(y_{bg}\) or \(y_{tot}\) values at the same time when changing \(\delta_{bg}\) or \(\delta_{tot}\) (following a Keeling curve (Keeling, 1958, 1960) with typical mean \(\delta^{13}\)C source of −25 ‰) results in about a factor ten smaller sensitivity and is therefore not critical. However, small \(\delta^{13}\)C(CO\(_2\)) variations (e.g. due to finite measurement precision or small inaccuracies), which are uncorrelated with total CO\(_2\), lead to large biases in fuel CO\(_2\), e.g. a measurement bias of \(\delta_{tot} = 0.1\ \text{‰}\) leads to a fuel CO\(_2\) misassignment of 5 µmol mol\(^{-1}\) (see Fig. 4b). Therefore, a high measurement precision as well as accuracy of \(\delta^{13}\)C(CO\(_2\)) is required for precise and accurate fuel CO\(_2\) estimation. Further critical parameters of the methods using \(\delta^{13}\)C(CO\(_2\)) are the isotopic signature of fuel CO\(_2\) and the isotopic signature of biospheric CO\(_2\) in the footprint (see Fig. 4e, f). The isotopic signatures of fuel and biospheric CO\(_2\) must therefore be well known (or potentially calibrated, see Sect. 4), if we want to use \(\delta^{13}\)C(CO\(_2\)) as tracer for fuel CO\(_2\). Especially assuming more enriched
fuel isotopic signatures or too depleted biospheric signatures biases the fuel CO\textsubscript{2} estimates strongly, because in these cases, biospheric and fuel CO\textsubscript{2} sources are difficult to distinguish using \(\delta^{13}\text{C}(\text{CO}_2)\).

3.3.4 Sensitivity of \(\Delta^{14}\text{C(} \text{CO}_2)\) method

Figure 4m–p display the sensitivity of the \(\Delta^{14}\text{C}(\text{CO}_2)\) based estimate of fuel CO\textsubscript{2} on the variables \(\Delta^{14}\text{C}_{\text{tot}}, \Delta^{14}\text{C}_{\text{bg}}\) and \(\Delta^{14}\text{C}_{\text{bio}}\). While fuel CO\textsubscript{2} is rather insensitive against misassignment of \(\Delta^{14}\text{C}(\text{CO}_2)_{\text{bio}}\) (Fig. 4o) and \(\Delta^{14}\text{C}(\text{CO}_2)_{\text{bf}}\) (Fig. 4p), it is very sensitive on \(\Delta^{14}\text{C}(\text{CO}_2)_{\text{tot}}\) (Fig. 4m) and \(\Delta^{14}\text{C}(\text{CO}_2)_{\text{bg}}\) (Fig. 4n). Thus, precise and accurate \(\Delta^{14}\text{C}(\text{CO}_2)\) measurements are important for fuel CO\textsubscript{2} determination. Note, that the typical measurement precision of conventional counting or AMS measurements is \(\pm 2\%\) (equivalent to about \(\pm 1.5\mu\text{mol mol}^{-1}\) fuel CO\textsubscript{2}), but of the continuous GC-AMS measurements will be in the order of \(\pm 5\%\) (equivalent to about \(\pm 3\mu\text{mol mol}^{-1}\) fuel CO\textsubscript{2}). The bias at \(x = 0\) of about \(1.1\mu\text{mol mol}^{-1}\) is due to the insensitivity of \(\Delta^{14}\text{C}(\text{CO}_2)\) against biofuel CO\textsubscript{2}.

3.4 Measurement precision and sub-monthly variation of parameters/variables

In Sect. 3.3.1–3.3.4, we have seen how sensitive the fuel CO\textsubscript{2} estimates are to the total mole fractions and \(\delta/\Delta\) values. Since they have a large impact on the fuel CO\textsubscript{2} estimate, we now include their uncertainty into our analysis of precision of fuel CO\textsubscript{2} estimation. In order to display the effect of a limited measurement precision of CO\textsubscript{2}, CO, \(\delta^{13}\text{C}(\text{CO}_2)\) and \(\Delta^{14}\text{C}(\text{CO}_2)\) we construct random realizations with mean value zero and a specific standard deviations. Additionally, we add a random sub-monthly variation to the CO offset and the biospheric/biofuel isotopic (\(\delta/\Delta\)-) signature in order to simulate the effect of variability of CO to CO\textsubscript{2} ratio and of isotopic end members. The random vectors for simulation of measurement uncertainty are \(y_{\text{tot}} (\pm 0.05\mu\text{mol mol}^{-1})\), \(y_{\text{bg}} (\pm 0.05\mu\text{mol mol}^{-1})\), \(\delta_{\text{bg}} (\pm 0.05\%\)\) and \(\delta_{\text{meas}} (\pm 0.05\%\)\), which are the typical mea-
The random CO offset (±15 nmol mol⁻¹) accounts for measurement precision of total CO and of the background CO, but additionally and more importantly for natural CO sources and sinks. We have chosen the variability of 15 nmol mol⁻¹, since fuel CO₂ data from weekly-integrated Δ¹⁴C(CO₂) measurements together with CO measurements indicate, that the natural CO offset typically varies within this range in Europe (Gros et al., 2002; Vogel, 2010). δbio (±2 ‰) is assumed to be a realistic variation of isotopic signature within one month (cmp. to Pataki et al., 2003). We used Δ¹⁴Cbio (±5 ‰) (cmp. Taylor et al., 2015) and Δ¹⁴Cbf (±10 ‰) as variation of the biospheric and biofuel Δ¹⁴C(CO₂) values. Δ¹⁴Cbg (±5 ‰) and Δ¹⁴Cmeas (±5 ‰ at hourly resolution) are assumed to be realistic measurement precisions of (potential) continuous Δ¹⁴C(CO₂) measurements in near future (McIntyre et al., 2013). The sub-monthly variation of the parameters \(R_F, R_tr, R_bf, \delta_F, \delta_tr, \delta_bf, \delta_tr, \delta_{bio}, \delta_{F-tr}, m_{bf} \) and \(m_{tr} \) is already included as we use only monthly median values of these parameters but in the STILT model these parameters vary at an hourly time scale. The distributions of the difference between estimated (incl. measurement and parameter uncertainties and sub-monthly variations) and modelled fuel CO₂ can be seen in Figs. 5–7. The finite measurement precision of mole fractions and isotope ratios considerably broaden the distributions compared to Figs. 1–3. Note that a possible misassignment of parameters or variables as investigated in Fig. 4 is neither accounted for in Figs. 1–3 nor in Figs. 5–7. When including the measurement uncertainties and (input and footprint-weighted) parameter variability into the considerations, the distributions for rural sites (such as Gartow), medium polluted sites (such as Heidelberg) and polluted sites (such as Berlin) widen significantly by about the same amount for all three sites, due to identical assumed measurement precisions and parameter variations. Rural sites are only slightly less variable than polluted sites. However, since the absolute fuel CO₂ offset is larger in Berlin (annual modelled average ca. 25 µmol mol⁻¹), than in Heidelberg (16 µmol mol⁻¹), and in Gartow (3 µmol mol⁻¹), the relative variability (= 1σ / mean(y_F)) is smallest for the measurement site in Berlin (e.g. 14 % for δ¹³C(CO₂)-method)
largest for Gartow (110 %). At present, it is therefore questionable whether the estimation of continuous fuel CO₂ is at all possible at only moderately polluted measurement sites. Even Δ¹⁴C(CO₂) measurements with a precision of 5 % result in a variability in fuel CO₂ of 90 % in Gartow, but a Δ¹⁴C(CO₂) precision of 2 % would lead to a variability in fuel CO₂ of only 35 % at rural sites (not shown here). The decrease of fuel CO₂ precision, which we observe when including limited measurement precision into our considerations, highlights again the necessity of performing precise atmospheric measurements of δ¹³C(CO₂) and CO₂ if we want to use δ¹³C(CO₂) as tracer for fuel CO₂.

3.5 Comparison of the estimated fuel CO₂ diurnal cycle with different tracer configurations

As the diurnal cycle of CO₂ emissions is coupled to a diurnal change of the atmospheric mixing layer height, fuel CO₂ mole fraction varies during the day. In our calculations, we only use monthly median values of \(\bar{\delta}_F \), \(\bar{\delta}_{\text{bio}} \), \(\bar{\delta}_{\text{bf}} \), \(\bar{\delta}_{\text{tr}} \), \(\bar{\delta}_{\text{F-tr}} \), \(\bar{R}_{\text{tr}} \), \(\bar{R}_{\text{bf}} \), \(\bar{R}_F \), \(\bar{m}_{\text{bf}} \) and \(\bar{m}_{\text{tr}} \) for fuel CO₂ estimation. Discrepancies between the modelled reference diurnal cycle and the tracer based diurnal cycle may be introduced due to a diurnal cycle of the parameters \(\bar{\delta}_F \), \(\bar{\delta}_{\text{bio}} \), \(\bar{\delta}_{\text{bf}} \), \(\bar{\delta}_{\text{tr}} \), \(\bar{\delta}_{\text{F-tr}} \), \(\bar{R}_{\text{tr}} \), \(\bar{R}_{\text{bf}} \), \(\bar{R}_F \), \(\bar{m}_{\text{bf}} \) and \(\bar{m}_{\text{tr}} \). We thus need to test if we are able to reproduce the diurnal fuel CO₂ pattern in order to estimate fuel CO₂ from tracers at sub-diurnal resolution. Therefore, we calculate the median diurnal fuel CO₂ cycles with the different methods and compare them to the reference model diurnal cycle for summer and for winter (see Fig. 8 exemplary for the urban station Heidelberg).

One can see that the δ¹³C(CO₂) and the CO+δ¹³C(CO₂) methods reproduce the reference diurnal cycle within its variability very well (standard errors of the respective hour in a half year are denoted as error bars in Fig. 8). Median hourly differences are about 0.1 ± 0.7 µmol mol⁻¹ for methods using δ¹³C(CO₂). The CO₂-only method largely overestimates fuel CO₂ contributions during the night by up to 10 µmol mol⁻¹
in winter and by about 15–25 μmol mol\(^{-1}\) in summer. During the afternoon, the CO\(_2\)-
only method overestimates fuel CO\(_2\) in winter and underestimates it in summer. Even
though the absolute difference is small during the afternoon, the relative difference is
still large. The CO\(_2\)-only method is therefore not able to trace the diurnal fuel CO\(_2\)
variation at a site like Heidelberg correctly. Using \(\Delta^{14}C(CO_2)\) for fuel CO\(_2\) estimation
leads to a slight median underestimation throughout the day (and season), which is due
to the presence of \(^{14}C(CO_2)\) in biofuel CO\(_2\) masking all biofuel CO\(_2\) contributions. The
CO-method slightly overestimates fuel CO\(_2\) during nighttime by about 10% in winter
and 5% in summer. The standard deviation of the hourly medians of the differences
between model and CO-based fuel CO\(_2\) is about 6% of the total fuel CO\(_2\).

One could consider implementing a diurnal correction into the fuel CO\(_2\) estimate in
a way that not only monthly median values of \(R_F, R_{tr}, R_{bf}, \delta_F, \delta_{ff}, \delta_{bf}, \delta_{tr}, \delta_{bio}, \delta_{F-tr}, \bar{m}_{bf}\)
and \(\bar{m}_{tr}\) are used, but also hourly correction factors for these parameters are multiplied
(cf. Vogel et al., 2010). This will be advantageous if the parameters exhibit a significant
diurnal cycle themselves. However, for our setting, implementing a diurnal correction
factor only weakly improves the agreement between the model and the estimated fuel
CO\(_2\) (not shown here). The reason is that the (hourly) median footprint-weighted par-
ameters do not influence the (hourly) median fuel CO\(_2\) estimates linearly, and that
the synoptic variations of the footprint-weighted parameters are larger than the diurnal
variations. Therefore, an hourly median correction factor does not necessarily improve
the hourly fuel CO\(_2\) estimate. We note that no diurnal systematic variability of the iso-
topic biospheric (respiration and photosynthesis) signature as well as of the natural CO
sinks and sources (which would can be treated as an enhancement or reduction of the
CO offset \(\Delta CO\) were implemented. Only random uncertainties of ±2‰ for \(\delta_{bio}\) and
±15 nmol mol\(^{-1}\) for \(\Delta CO\) have been implemented. This assumption of random variabil-
ity will not be correct, if systematic (e.g. diurnal) variation of \(\delta^{13}C_{bio}\) and natural \(\Delta CO\)
variation occur. For \(\delta^{13}C_{bio}\) the diurnal changes are expected to be small (< 1‰, Flana-
gan et al., 2005, corresponding to \(y_F\) biases of < 0.5 μmol mol\(^{-1}\)), but for CO these may
be larger (e.g. diurnal natural ∆CO variation of about 10 nmol mol\(^{-1}\) may occur from dry deposition of CO in forest soils during night and from photochemical production of CO by hydrocarbons during the day (Gros et al., 2002) corresponding to ca. 2.5 µmol mol\(^{-1}\) fuel CO\(_2\)). Therefore, in a real setting, it might be necessary to model natural CO concentration in order to not introduce a bias into diurnal y\(_F\) structures.

In inverse model studies, often only afternoon hours are used to derive fluxes, as the atmospheric mixing can be better simulated by the model during conditions with a well developed mixed layer. Therefore, it is especially important to check the afternoon values of fuel CO\(_2\). Figure 8 shows an enlarged inlay of the diurnal cycle during the afternoon hours. Since in this model study we use the minimum of total CH\(_4\) values within two days as background value (Appendix A2), the afternoon offsets are very small, leading to a low signal to noise ratio. However, differences between the δ\(^{13}\)C(CO\(_2\)), CO, and ∆\(^{14}\)C(CO\(_2\))-based and reference fuel CO\(_2\) are very small as well (mean differences < 10% of afternoon fuel CO\(_2\) value, standard deviation of differences about 30%). Therefore, it seems justified to use the afternoon values of continuous fuel CO\(_2\) estimates (based on δ\(^{13}\)C(CO\(_2\)) or CO) for inverse model studies despite the small absolute fuel CO\(_2\) values of about 1–2 µmol mol\(^{-1}\) at an urban site.

4 Calibration of \(\delta_F\), \(\delta_{F-tr}\), \(\delta_{ff}\) and \(R_F\) with ∆\(^{14}\)C(CO\(_2\)) measurements

In order to estimate fuel CO\(_2\) accurately with methods using CO and/or δ\(^{13}\)C(CO\(_2\)), the parameters \(\delta_F\), \(\delta_{F-tr}\), \(\delta_{ff}\) (and \(\delta_{bio}\)) and \(R_F\) need to be known with high accuracy, since otherwise biases are introduced into the fuel CO\(_2\) estimate (see Fig. 4). However, for the evaluation of a measured data set, \(\delta_F\), \(\delta_{F-tr}\), \(\delta_{ff}\), \(\delta_{bio}\) and \(R_F\) are not available but either extensive source sampling campaigns or good bottom-up inventories are necessary. Alternatively, these parameters could also be “calibrated” using fossil fuel CO\(_2\) estimates from ∆\(^{14}\)C(CO\(_2\)) measurements with high precision (in addition to biofuel contributions, which need to be added on top). For this purpose, Eqs. (1) and (2) can
be re-arranged and solved for calibration of δ_F, δ_{F-tr}, δ_{ff} or $\overline{R_F}$ (for derivation see Appendix B). Note, that we calibrate δ_F, δ_{F-tr}, δ_{ff} assuming a known value for δ_{bio} (see Eqs. B1, B2 and B3). Since we use the same value of δ_{bio} for calibration of δ_F, δ_{F-tr}, δ_{ff} as well as for the y_F estimation (see Eqs. A7, A8 and A10), biases introduced due to a wrong δ_{bio} cancel out. The calibration with radiocarbon measurements therefore takes care of these two unknowns at once.

Since $\Delta^{14}C(CO_2)$ measurements are time-consuming and costly, in practice only a limited number of radiocarbon measurements can be regularly performed. For example, in the Integrated Carbon Observation System (ICOS) atmospheric network, the radiocarbon measurement capacity was designed for about 50 radiocarbon measurements per station per year of which about 26 will be used for integrated sampling for long-term monitoring of fossil fuel CO$_2$.

Previous radiocarbon calibration approaches suggested integrated (e.g. monthly) sampling of $\Delta^{14}C(CO_2)$ for CO tracer calibration (cf. Levin and Karstens, 2007, and Vogel et al., 2010, for $\overline{R_F}$). Another possible approach for tracer calibration is to take grab samples rather than integrated samples. In the ICOS network ca. 24 radiocarbon grab samples would be available for calibration of $\overline{R_F}$ and/or δ_F, δ_{F-tr}, δ_{ff}. Grab samples could be taken through-out the year and the derived parameters $\overline{R_F}$, δ_F, δ_{F-tr} and δ_{ff} could then be averaged to one median value or separated into seasons and averaged to separate values e.g. for summer and winter. The optimal sampling strategy depends on the structure, variation and noise of $\overline{R_F}$, δ_F, δ_{F-tr} and δ_{ff} within one year. Principally, it would also be possible to take all the samples consecutively at 2 h intervals during a so-called “event” and calculate the median value from the event. Therefore, we compare here four different sampling strategies for parameter calibration, all using a total of n samples per year (in ICOS: $n \approx 24$). Note that we include sub-monthly variation into the parameters and measurement uncertainties into the observations (as in Sect. 3.4).

1. Integrated sample calibration: take $n/24$ integrated samples each month and their associated background samples ($n/24$) (for $n \approx 24$ that makes 12 monthly sam-
ples and 12 monthly background samples a year) and calibrate R_F, δ_F, δ_{F-tr} and δ_{ff} on a monthly basis from the integrated samples (this corresponds to the approach suggested by Levin and Karstens, 2007, and Vogel et al., 2010, for R_F). In this approach, the mean ΔCO and fuel ΔCO_2 (from integrated CO and $\Delta ^{14}C(CO_2)$ sampling) over the course of one month are used to calculate monthly $\langle \Delta x \rangle_{\Delta y}$. However, since actually the mean of ratio $R_F = \langle \Delta x \rangle_{\Delta y}$ is required, and not the ratio of means $\langle \Delta x \rangle_{\Delta y}$ (Vogel et al., 2010), biases may be introduced into the y_F estimate (same holds for the factors in $\delta_{F-tr,ff}$).

2. Annual grab sample calibration: randomly select a number of samples $n/2$ (and their associated afternoon background ($n/2$)) each year and calibrate annual median R_F, δ_F, δ_{F-tr} and δ_{ff}. Biases introduced by this sampling strategy are twofold; first, the random choice of grab samples may not represent the median annual value. This potential bias decreases with the number of grab samples used. Second, the potential seasonal cycle of the parameters is not considered. Therefore, in the annual grab sample calibration, the winter-time and summer-time fuel CO_2 estimates will always be shifted against each other, as R_F, δ_F, δ_{F-tr} and δ_{ff} exhibit a seasonal cycle, but only one annual median value for these parameters would be used.

3. Seasonal grab sample calibration: randomly select a number of samples $n/4$ (and their associated afternoon background ($n/4$)) in summer and in winter and calibrate a median R_F, δ_F, δ_{F-tr} and δ_{ff} with half-yearly resolution. Here again, the random choice of grab samples may not represent the median annual value, but this bias is even larger here than in the annual grab sample calibration, since only half the samples are available to obtain a robust value for R_F, δ_F, δ_{F-tr} and δ_{ff}.
for summer and winter. In return, it is principally possible to detect a seasonal variation of R_F, δ_F, δ_{F-tr} and δ_{ff}.

4. Seasonal event calibration: randomly select an “event day” each season. On this day, select $n/2 - 2$ consecutive grab samples (and 1 associated afternoon background) and calibrate a median R_F, δ_F, δ_{F-tr} and δ_{ff} with half-yearly resolution. This approach is similar to approach 3, but entails a greater risk of choosing an event, which is not representative for the entire season, since subsequent samples are not independent of each other. On the other side, it has the advantage of using more calibrations for the same amount of radiocarbon measurements as approach 3 since only one background sample is needed for each event.

Comparing these sampling strategies to each other using one model run is difficult, since the result changes from random realization to random realization depending on the selection of calibration samples in sampling strategy 2–4. We have therefore performed 5000 model runs, and used the root median square difference between the obtained and originally modelled reference values R_F, δ_F, δ_{F-tr} and δ_{ff} to calculate the difference between tracer-based estimate and modelled reference fuel CO$_2$.

Table 3 shows the mean difference and standard deviation (as determined from a Gaussian fit to the difference histogram of modelled and tracer-based fuel CO$_2$, in analogy to Fig. 5) for an urban setting. One can see that the “integrated sample calibration” causes biases due to the covariance of the factors in Eqs. (B1)–(B4). The effect is much stronger for methods using δ^{13}C(CO$_2$) (ca. 15 % of mean fuel CO$_2$ offset in Heidelberg (16 µmol mol$^{-1}$) than for the CO method (ca. 8 %). Thus, it seems that integrated sampling of Δ^{14}C(CO$_2$), although important for long-term monitoring of fuel CO$_2$, cannot be reliably used in addition for calibration of continuous fuel CO$_2$ estimating methods. Note, that the differences found here are not due to the insensitivity of biofuel CO$_2$ contributions of Δ^{14}C(CO$_2$), as we add the (assumed as known) biofuel CO$_2$ prior to “calibration” (see Eqs. B1–B3).
We further find that since $\overline{\delta_F}$, $\overline{\delta_{F-tr}}$, $\overline{\delta_f}$ and $\overline{R_F}$ do not exhibit a strong annual cycle, but show rather large, high-frequent variations, the best sampling strategy for 24 available radiocarbon measurements per year (as would be the case for the ICOS network) is, using all available samples to calibrate well-defined median annual values of $\overline{R_F}$, $\overline{\delta_F}$, $\overline{\delta_{F-tr}}$ and $\overline{\delta_f}$ (sampling strategy 2). Only, when using the δ^{13}C(CO$_2$) method with 96 (or more) available radiocarbon measurements, it is advisable to group the calibrations into half-yearly median intervals. This may be a realistic scenario, if the parameter δ_F does not show any trend over the course of various years.

The accuracy of the seasonal event calibration is very similar to the accuracy of the seasonal calibration, but slightly better for 24 available radiocarbon samples (see Table 3) since more calibrations per radiocarbon samples are available. It is slightly worse for 96 samples due to non-representativeness of a single event for the entire season.

5 Discussion

In this work, we analyzed the advantages and disadvantages of different tracers for estimating continuous fuel CO$_2$ at different types of measurement stations. We calculate the accuracy and precision of continuous fuel CO$_2$ at three exemplary stations; one rural, one urban and one polluted station. This should serve as orientation for the development of an atmospheric measurement strategy, so that the best tracer configuration for a particular station can be chosen to resolve the different CO$_2$ source components over a country or region. The results can be used to plan and construct new measurement networks and sampling strategies with the goal of deriving fuel CO$_2$ concentrations on high temporal resolution. In order to improve inverse model approaches, tracer-based continuous fuel CO$_2$ estimates should be more accurate and precise than those derived from bottom-up inventories with uncertainties of 30–150 % at regional resolution (Wang et al., 2013). We therefore seek to monitor continuous fuel CO$_2$ with
a precision of at least 30\% and with biases smaller than 10\%. In the discussion, we focus on the results obtained when including the currently achievable measurement uncertainty into the tracer records (see Figs. 5–7 and Table 3). If measurement precision improves further, the precision of the fuel estimate will also increase and approach the upper limit of accuracy and precision (Figs. 1–3) if δ_i and R_i are perfectly well known.

5.1 Evaluation of the CO$_2$-only method

The simplest approach is to use total CO$_2$ as a proxy for fuel CO$_2$. However, as soon as CO$_2$ is released or taken up by the biosphere, total CO$_2$ will not be an adequate tracer for fuel CO$_2$. For all stations investigated, we found that biogenic CO$_2$ contributions are generally not negligible and vary on the time scale of hours. Only during the winter time in strongly polluted areas, biogenic CO$_2$ contributions lead to a relatively small bias of about 5\% and show small variation ($\sigma / \text{mean}(y_F)$: 5\%, see Fig. 7). For stations with more biospheric activity in the catchment area, total CO$_2$ significantly overestimated fuel CO$_2$ and leads to strong variations. Therefore, other fuel CO$_2$ tracers need to be considered in these cases.

5.2 Evaluation of the CO and δ^{13}C(CO$_2$) methods

The accuracy of CO and/or δ^{13}C(CO$_2$) based fuel CO$_2$ estimates depends to a large degree on how well the different parameters such as R_F, R_{tr}, R_{bf}, δ_F, δ_{ff}, δ_{bf}, δ_{tr}, δ_{F-tr}, m_{bf}, m_{tr} and δ_{bio} are known. If the monthly median values of these parameters are perfectly well known, methods using δ^{13}C(CO$_2$) or CO are very accurate for all measurement sites (see Figs. 1–3b–e and 5–7b–e). However, misassignment of some parameters, e.g. the mean isotopic signatures $\overline{\delta_{ff}}$, $\overline{\delta_{bf}}$, $\overline{\delta_{tr}}$, $\overline{\delta_{F-tr}}$ and $\overline{\delta_{bio}}$ leads to a significant bias in the fossil fuel CO$_2$ estimate (Fig. 4). Therefore, in practice, it is important to screen and monitor all sources and sinks in the catchment area of the measurement site and to determine the median isotopic source signature and the median ratios R_F, R_{tr}, R_{bf} or the CO offset as accurately as possible, e.g. by calibration with co-located
Δ¹⁴C(CO₂) measurements. However, a calibration using integrated Δ¹⁴C(CO₂) samples is not feasible without introducing biases (see Table 3). It is preferable to use Δ¹⁴C(CO₂) grab samples for calibration of R_F, R_{tr}, R_{bf}, $δ_F$, $δ_{ff}$, $δ_{bf}$, $δ_{tr}$ or $δ_{F-tr}$. We found that the accuracy of the R_F, R_{tr}, R_{bf}, $δ_F$, $δ_{ff}$, $δ_{bf}$, $δ_{tr}$ or $δ_{F-tr}$ determination depends on the number of radiocarbon samples available and on the sampling strategy used. In the ICOS project approximately 24 radiocarbon samples will be available for calibration of R_F, $δ_F$, $δ_{ff}$, $δ_{bf}$, $δ_{tr}$ or $δ_{F-tr}$. For that amount of calibration samples available, we find that due to the large noise of the calibrated footprint-weighted parameters R_F, $δ_F$, $δ_{ff}$, $δ_{bf}$, $δ_{tr}$ or $δ_{F-tr}$ it is advantageous to group all calibrations to obtain robust annual median values for R_F, $δ_F$, $δ_{ff}$, $δ_{bf}$, $δ_{tr}$ or $δ_{F-tr}$. In this case, the accuracy will typically be better than 10% when using the CO-method or the $δ^{13}$C(CO₂) method. Only if a large number of precise radiocarbon measurements are available or if the parameters do not change over the course of several years and thus, several years of calibration samples can be accumulated, it is advantageous to apply radiocarbon calibrations at half-yearly resolution. Note, that due to changes in technology and technical processes, as well as due to a year-to-year variation of extreme temperatures, the weight of the different sectors is likely to change within a period of four years. However, this could be checked using night-time Keeling plot intercepts.

CO as fuel CO₂ tracer shows a precision (e.g. $1σ / \text{mean}(y_F)$) of about 30–40% for Heidelberg. The uncertainty originates mainly from the large variation of R_F in our model runs due to the inhomogeneity of fuel CO sources in the footprint area of urban or polluted measurement stations and due to natural CO sources. For the rural station of Gartow, the precision of the CO-based approach is comparable to the precision of the $δ^{13}$C(CO₂)-based approach, but for urban or polluted areas the precision of the $δ^{13}$C(CO₂)-based approach seems more promising.

The uncertainty of the $δ^{13}$C(CO₂) approach (e.g. $1σ / \text{mean}(y_F) ≈ 30\%$ for Heidelberg) is mainly determined by the limited measurement precision of $δ^{13}$C(CO₂). Thus
in order to use $\delta^{13}C(CO_2)$ as a tracer for fuel CO$_2$ it is vital to perform isotopic measurements with a measurement precision of at least 0.05‰. The combination of $\delta^{13}C(CO_2)$ and CO for fuel CO$_2$ estimation is favorable in cases where each of two emission groups is well distinguishable by one of the tracers. Since for our model setting this is only partly the case (EDGAR emission inventory, see Table A1), the combination of these tracers provides only little additional information.

When evaluating CO or $\delta^{13}C(CO_2)$ as tracer for fuel CO$_2$, one should keep in mind that the precision of approaches using $\delta^{13}C(CO_2)$ and CO depend also on the source characteristics in the catchment area. For example, $\delta^{13}C(CO_2)$ is especially qualified as a tracer for fuel CO$_2$ when all fuel CO$_2$ sources in the catchment area of the measurement site are strongly depleted compared to biospheric CO$_2$ (see Appendix, Fig. A1). The source characteristics in the catchment area of a measurement site must therefore be considered when estimating the precision of fuel CO$_2$ at a particular station.

5.3 Evaluation of $\Delta^{14}C(CO_2)$ method

We have found, that $\Delta^{14}C(CO_2)$ measurements with 5‰ precision (see Figs. 5–7) would generally be the most precise tracer for continuous fuel CO$_2$ estimation at rural ($1\sigma / \text{mean}(y_F) \approx 90\%$), urban (ca. 20%) and polluted (ca. 10%) stations. The precision of fuel CO$_2$ estimates is determined mainly by the limited measurement precision of background and total $\Delta^{14}C(CO_2)$ (±5‰). Note however, that $\Delta^{14}C(CO_2)$ measurements with 5‰ precision are not yet fully developed and commercially available. The downside of $\Delta^{14}C(CO_2)$ is its inability to determine biofuel CO$_2$. Therefore, the $\Delta^{14}C(CO_2)$ methods will underestimate the fuel CO$_2$ (biofuel plus fossil fuel) contributions approximately by the share of biofuel in CO$_2$ at the site. This may be only a small contribution as was the case for the studied year 2012 (e.g. 5% in Heidelberg), but may increase in the future. Therefore, for an unbiased estimation of fuel CO$_2$ using $\Delta^{14}C(CO_2)$, biofuel CO$_2$ would need to be added individually, e.g. using the tracer CO
or from bottom-up inventories. For some purposes, it may actually be advantageous to estimate only the fossil fuel CO₂ contribution, which is the fuel CO₂ contribution without biofuel CO₂ and therefore excludes short-cycle carbon. However, for model inversions, the biofuel CO₂ is important as well, since it equally contributes to the instantaneous measured CO₂ concentration.

So far, we have not investigated the effect of nuclear power plant ¹⁴C(CO₂) contributions at the measurement site, which could additionally bias fuel CO₂ estimates derived from ∆¹⁴C(CO₂) measurements. Dispersion model results for Heidelberg (M. Kuderer, personal communication, 2015) suggest that the nuclear power facilities (most importantly Philippsburg, located about 25 km south-west of Heidelberg), increase monthly mean ∆¹⁴C(CO₂) by about 2 ± 2‰, corresponding to a misassignment in fuel CO₂ of about 0.8 ± 0.8 µmol mol⁻¹ (≈ 5%). If there are nuclear power plants or fuel reprocessing plants in the catchment area of the measurement site and if monthly mean emission data of pure ¹⁴C(CO₂) from these nuclear power plants are available, it is advisable to correct for them at the highest possible temporal resolution e.g. using transport models (Vogel et al., 2013b). Note, that for the calibration of RF, δF, δff, δbf, δtr or δF-tr using ∆¹⁴C(CO₂) grab samples, it should be possible to choose the calibration grab samples via trajectory forecast such that no nuclear power plant influences are encountered in the grab samples.

5.4 Relative precision at different measurement sites

When comparing the precision of the CO, δ¹³C(CO₂) and ∆¹⁴C(CO₂) tracer methods at the rural, urban and polluted model station, we find that rural sites seem to exhibit similar, but slightly smaller variations. However, since the mean fuel CO₂ offset is larger at more polluted measurement sites, the relative precision is much better there and different tracer configurations for monitoring fuel CO₂ seem much more promising at polluted locations. Due to the small fuel CO₂ offsets at rural sites, it does not seem feasible, at present state, to monitor continuous fuel CO₂ with sufficient precision with
any of the tracers explored here. This may be important to consider when planning fuel CO$_2$ monitoring in national or international measurement networks.

5.5 Evaluation of diurnal biases in fuel CO$_2$

We have compared the diurnal cycle of the fossil fuel estimates using the different tracers. For Heidelberg, we found that the tracer configurations using CO, δ^{13}C(CO$_2$) and Δ^{14}C(CO$_2$) were able to reproduce the diurnal cycle well within 5% (1σ). This may be surprising, since one might expect a diurnal pattern of δ_F and R_F due to a varying share of emissions of different emission sectors in the footprint, leading to a systematic deviation of the estimated from the real modelled diurnal cycle. However, since the diurnal patterns are small (peak to peak difference of δ_F ca. 2 ‰), the mean diurnal variations are not significantly improved when using a diurnal correction of the mean isotopic source signatures. One should keep in mind that natural CO contributions may also vary systematically on a diurnal basis. A systematic variation was not included into the model simulation, but will potentially introduce a diurnal bias into the continuous fuel CO$_2$ estimate in a real setting. Therefore, it may be necessary to model or approximate natural CO in a real setting. It may be possible to approximate the (sub-monthly) natural CO component using formaldehyde (HCHO) measurements, since the production of CO from NMHC pass HCHO as intermediate molecule (Atkinson, 2000). However, the high dry deposition rate of HCHO may complicate the interpretation further. Since afternoon values are often used in inverse model studies to derive fluxes it is important, that afternoon fuel CO$_2$ values can be estimated accurately. This could be confirmed for δ^{13}C(CO$_2$) and CO in this study (see Fig. 8).

6 Conclusion

The results of our model study suggest that with our current measurement precision of continuous tracers such as CO, δ^{13}C(CO$_2$) or Δ^{14}C(CO$_2$), it is not possible to estimate...
fuel CO$_2$ at rural areas with a precision better than 90%. Therefore, the design of some atmospheric measurement networks such as that of ICOS, may need to be revised if fuel CO$_2$ contributions shall be monitored and evaluated. At present, it seems not helpful to equip measurement stations in rural areas with instruments for δ^{13}C(CO$_2$) and CO measurements with the objective of monitoring continuous fuel CO$_2$. However, installation of instruments measuring these components at urban or polluted sites (as e.g. planned within the Megacities Carbon project) seems worthwhile in order to improve the fuel CO$_2$ bottom-up inventories.

Potential future continuous Δ^{14}C(CO$_2$) measurement with a precision of 5‰ is the most promising tracer (precision ca. 10–20%), but the insensitivity against biofuel contributions as well as nuclear power plant emissions of 14C(CO$_2$) need to be considered. δ^{13}C(CO$_2$) and CO-based methods do not suffer from these shortcomings, but require accurate characterization (e.g. via precise radiocarbon measurements) of the sources in the catchment area of the measurement site with respect to R_F, \bar{R}_{tr}, R_{bf}, $\bar{\delta}_F$, $\bar{\delta}_{bf}$, $\bar{\delta}_{tr}$ or $\bar{\delta}_{F-tr}$. For a limited number (e.g. 24) of precise Δ^{14}C(CO$_2$) measurements available, the best sampling strategy is to calibrate the footprint-weighted parameters using grab samples and averaging all to obtain median annual footprint-weighted parameters \bar{R}_F, \bar{R}_{tr}, \bar{R}_{bf}, $\bar{\delta}_F$, $\bar{\delta}_{bf}$, $\bar{\delta}_{tr}$ and $\bar{\delta}_{F-tr}$. Typically, we can then obtain fuel CO$_2$ estimates with a bias of about 10% and a precision of 25–40%. This is smaller than the uncertainties of bottom-up inventories and therefore opens the door for a significant improvement of highly resolved emission inventories from atmospheric observation. The precision of the δ^{13}C(CO$_2$) method may further increase in future, if the measurement precision of δ^{13}C(CO$_2$) improves.
Appendix A: Methods of continuous fuel CO₂ determination

A1 Tracer configurations and their emission groups

We formally introduce six different tracers or tracer combinations, which we use to estimate fuel CO₂ continuously: CO₂ is used as sole tracer for fuel CO₂. CO, δ¹³C(CO₂) and Δ¹⁴C(CO₂) records are each used solely with CO₂ to estimate fuel CO₂. Further, CO is used as tracer for traffic (and δ¹³C(CO₂) as tracer for fuel CO₂ minus traffic) and finally CO is used as tracer for biofuels (and δ¹³C(CO₂) as tracer for fuel CO₂ minus biofuels). The different emission groups are also listed and characterized in Table A1.

A1.1 CO₂ as sole tracer for fuel CO₂

When using CO₂ alone as “tracer” for fuel CO₂ (\(y_F = y_{ff} + y_{bf}\)), the total regional CO₂ offset is assumed to solely originate from fuel emissions:

\[y_F = \Delta y \]

(A1)

With \(\Delta y = y_{tot} - y_{bg}\).

This simple approach is valid, if (nearly) all CO₂ emissions are from fuel burning, as might be the case in cold winters or in areas without biospheric activity (e.g. Mega cities).

A1.2 CO as tracer for fuel CO₂

The CO offset (\(\Delta x = x_{tot} - x_{bg}\)) can be used to estimate fuel CO₂ offset if it is divided by the mean ratio \(R_F = \Delta x / \Delta y_F\) of all fuel sources:

\[y_F = \frac{\Delta x}{R_F} \]

(A2)
Note that in reality the ratio $\overline{R_F}$ varies, depending on the share of emissions of different emission sectors in the catchment area, their temporal emission patterns, and due to natural CO sources and sinks, at least in summer (Prather et al., 2001). We denote $\overline{R_F}$ with an overbar to emphasize that this is a footprint-weighted average of the fuel emission ratio.

A1.3 CO as tracer for traffic CO$_2$ and $\delta^{13}C$(CO$_2$) as tracer for all fuel CO$_2$, except for traffic CO$_2$

We now include $\delta^{13}C$(CO$_2$) in fuel CO$_2$ estimation as a tracer for all fuel CO$_2$ except those of traffic ($y_{F-tr} = y_{ff} + y_{bf} - y_{tr}$).

\[y_{tot} = y_{bg} + y_{bio} + y_{tr} + y_{F-tr} \] \hspace{1cm} (A3)

\[y_{tot} \delta_{tot} = y_{bg} \delta_{bg} + y_{bio} \delta_{bio} + y_{tr} \delta_{tr} + y_{F-tr} \delta_{F-tr} \] \hspace{1cm} (A4)

In analogy to $\overline{R_F}$ we denote $\overline{\delta_{tr}}$ and $\overline{\delta_{F-tr}}$ with an overbar to emphasize that these are footprint-weighted averages of the emission groups traffic CO$_2$ and fuel CO$_2$ excluding traffic, respectively. Solving Eq. (A3) for y_{bio}, we can substitute y_{bio} in Eq. (A4). In analogy to Eq. (A2), we use CO as tracer for traffic CO$_2$:

\[y_{tr}(t) = \frac{x_{tr}(t)}{R_{tr}} \] \hspace{1cm} (A5)

With the mean $\Delta CO / \Delta CO_2$ ratio of traffic $\overline{R_{tr}} = (\Delta x / \Delta y)_{tr}$. CO$_{tr}$ can be determined from:

\[CO_{tr}(t) = \Delta CO(t) \cdot \overline{m_{tr}} \] \hspace{1cm} (A6)

with $\overline{m_{tr}} = (\Delta x_{tr} / \Delta x)$ being the share of traffic CO to the total CO offset. $\overline{m_{tr}}$ needs to be estimated from bottom-up inventories and can be found in Table A1 (right column).
and is also dependent on the footprint area of the measurement site and the sources and sinks lying in this area. Equations (A3)–(A6) can then be re-arranged:

\[
y_{F-tr} = \frac{y_{tot} \delta_{tot} - y_{bg} \delta_{bg} - (y_{tot} - y_{bg} - y_{tr}) \delta_{bio} - y_{tr} \delta_{tr}}{\delta_{F-tr} - \delta_{bio}}
\]

(A7)

Total fuel CO₂ \((y_{F})\) contribution can then be determined as the sum of \(y_{tr}\) (Eq. A5) and \(y_{F-tr}\) (Eq. A7).

A1.4 CO as tracer for biofuel CO₂ and \(\delta^{13}C(CO₂)\) as tracer for all fuel CO₂, except for biofuel CO₂

This method of fuel CO₂ estimation is in analogy to Sect. A.1.3, but instead of separating fuel CO₂ into traffic contributions \((y_{tr})\) and others \((y_{F-tr}),\) we separate it into biofuel contributions \((y_{bf})\) and others \((y_{F-bf})\); this leads to:

\[
y_{F-bf} = \frac{y_{tot} \delta_{tot} - y_{bg} \delta_{bg} - (y_{tot} - y_{bg} - y_{bf}) \delta_{bio} - y_{bf} \delta_{bf}}{\delta_{ff} - \delta_{bio}}
\]

(A8)

Analogously to Eq. (A10), we formulate for \(y_{bf}\):

\[
y_{bf}(t) = \frac{\Delta x(t) \cdot \bar{m}_{bf}}{R_{bf}}
\]

(A9)

With \(\bar{m}_{bf} = (\Delta x_{bf} / \Delta x)\) from bottom-up inventories (see Table A1). Total fuel CO₂ \((y_{F})\) is calculated as the sum of \(y_{bf}\) (Eq. A9) and \(y_{F-bf}\) (Eq. A9).
A1.5 $\delta^{13}\text{C(CO}_2\text{)}$ as sole tracer for fuel emission

When using δ_{tot} as tracer for all fuel contributions, Eqs. (A3) and (A4) simplify to

$$y_F = \frac{y_{\text{tot}}\delta_{\text{tot}} - y_{bg}\delta_{bg} - (y_{\text{tot}} - y_{bg})\delta_{\text{bio}}}{\delta_F - \delta_{\text{bio}}}$$

(A10)

if all fuel CO$_2$ (y_{F-tr} and y_{tr}) contributions are pooled to y_F.

A1.6 $\Delta^{14}\text{C(CO}_2\text{)}$ as tracer for fossil fuel CO$_2$

Following Levin et al. (2008), we can derive fossil fuel CO$_2$ from $\Delta^{14}\text{C(CO}_2\text{)}$ and total CO$_2$ measurements according to:

$$y_{ff} =$$

$$y_{bg}\left(\Delta^{14}\text{C}_{bg} - \Delta^{14}\text{C}_{bio}\right) - y_{\text{tot}}\left(\Delta^{14}\text{C}_{\text{tot}} - \Delta^{14}\text{C}_{bio}\right) - y_{bf}\left(\Delta^{14}\text{C}_{bio} - \Delta^{14}\text{C}_{bf}\right)$$

$$1 + \Delta^{14}\text{C}_{bio}$$

(A11)

However, since $\Delta^{14}\text{C}_{bio} \approx \Delta^{14}\text{C}_{bf}$, and because biofuel contributions are not known, we neglect the last term of the numerator in the following. Note, that since $\Delta^{14}\text{C(CO}_2\text{)}$ is not sensitive to biofuel contributions, it is only possible to estimate the fossil fuel CO$_2$ contributions without biofuel contributions.

A2 Determination of parameters and variables

The background values y_{bg}, x_{bg}, δ_{bg} and $\Delta^{14}\text{C}_{bg}$ should represent the regional clean air to which the source contributions from the footprint area are added. Since often, there are no nearby clean-air observations available for a polluted station, we use those mole fractions as background where the air masses in the boundary layer are well mixed with the free troposphere. This is usually the case in the afternoon and is associated with
low mole fractions. Since CO₂, as well as CO both have local sinks relevant on the timescale of days, we here use CH₄ as an indicator for a well-mixed boundary layer and assume that, when the CH₄ mole fraction reaches a minimum value (within two days), vertical mixing is strongest. Principally, if continuous radon measurements were available, these could also be used as an indicator for vertical mixing (Dörr et al., 1983), instead of CH₄. We checked that the CH₄ minimum values always represent a lower envelope of the simulated greenhouse gas record and does not vary at the synoptic time scale. We then use the total mole fractions and isotopic records \(y_{\text{tot}}, x_{\text{tot}}, \delta_{\text{tot}}, \) and \(\Delta^{14}C_{\text{tot}}\) observed during situations with minimal CH₄ mole fractions as background values.

Further, in order to solve Eqs. (A2)–(A11), we need the input parameters \(\delta_{\text{bio}}, \Delta^{14}C_{\text{bio}}\). These input parameters were assigned with the objective to create realistic modelled data set (see Tables 1 and A1). Additionally, the integrated footprint-weighted parameters \(R_F, R_{\text{tr}}, R_{\text{bf}}, \delta_F, \delta_{\text{ff}}, \delta_{\text{bf}}, \delta_{\text{tr}}, \delta_{\text{bio}}, \delta_{F-tr}, m_{\text{bf}}\) and \(m_{\text{tr}}\) are required (see Table A1). We call these parameters footprint-weighted, since the ratios and isotopic signatures depend on the relative contribution from the different emission sectors (with their sector specific emission ratios and isotopic signatures) within the footprint of the measurement site. We denote the integrated footprint-weighted parameters with an overbar to draw attention to the fact that the parameters are averaged over the (e.g. monthly) footprint area. Even though the emission factors of the source categories used here are fixed for every pixel, integrated footprint-weighted \(R_F, R_{\text{tr}}, R_{\text{bf}}, \delta_F, \delta_{\text{ff}}, \delta_{\text{bf}}, \delta_{\text{tr}}, \delta_{\text{bio}}, \delta_{F-tr}, m_{\text{bf}}\) and \(m_{\text{tr}}\) are not constant in time, because the footprint of the measurement site and the emission patterns are temporally variable. Thus, the footprint-weighted parameters change when the emissions from the different sectors or the footprint of the measurement site vary. Note, that for our model study we do not require the parameters to be absolutely correct, since we do not compare them to measured data. However, since we want to provide a realistic case study, we seek to use the most realistic parameters (see values in Tables 1 and A1).
Appendix B: “Calibration” with $\Delta^{14}\text{C(CO}_2\text{)}$

Solving Eqs. (A3), (A8), (A9) and (A11) for fuel CO$_2$ requires $\overline{R_F}$, $\overline{\delta_F}$, $\overline{\delta_{ff}}$ and $\overline{\delta_{F-tr}}$. If these values are not known, they may be derived from $\Delta^{14}\text{C(CO}_2\text{)}$ observations (what we then call $\Delta^{14}\text{C(CO}_2\text{)}$-calibrated). However, for the calibration y_{ff} must be known. The idea is to calibrate fossil fuel CO$_2$, e.g. with precise $\Delta^{14}\text{C(CO}_2\text{)}$ measurements, on a lower time resolution (e.g. monthly) and assume that the footprint-weighted parameters $\overline{R_F}$, $\overline{\delta_F}$ $\overline{\delta_{ff}}$ and $\overline{\delta_{F-tr}}$ do not change significantly within this calibration interval.

Re-arranging Eqs. (1) and (2) for $\overline{\delta_{ff}}$ and averaging it monthly leads to

$$\overline{\delta_{ff}} = \frac{y_{tot}\delta_{tot} - y_{bg}\delta_{bg} - (y_{tot} - y_{bg} - y_{ff} - y_{bf})\delta_{bio} - y_{bf}\overline{\delta_{bf}}}{y_{ff}},$$

(B1)

which could then be used in Eq. (A9). Note that we require the biofuel CO$_2$ in addition to the fossil fuel CO$_2$ from $\Delta^{14}\text{C(CO}_2\text{)}$.

$\overline{\delta_{F}}$ can then be derived, if the y_{bf} concentration is known.

$$\overline{\delta_{F}} = \frac{\overline{\delta_{ff}}y_{ff} + \overline{\delta_{bf}}y_{bf}}{y_{ff} + y_{bf}}$$

(B2)

If fossil fuel emissions are divided into fossil fuel contributions without traffic (y_{F-tr}) and traffic contributions (y_{tr}), we can derive $\overline{\delta_{F-tr}}$ required for solving Eq. (A8):

$$\overline{\delta_{F-tr}} = \frac{\overline{\delta_{F}}y_{F} - \overline{\delta_{tr}}y_{tr}}{y_{F} - y_{tr}}$$

(B3)

Analogously, the ratio $\overline{R_F}$ could be calibrated following:

$$\overline{R_F} = \frac{\Delta x}{\Delta y_{F}}$$

(B4)
In order to calculate the monthly mean value of $\langle \delta_F \rangle$ and $\langle R_F \rangle$, the mean ratios $\langle \Delta x \rangle$ and $\langle \Delta y_F \rangle$ (Eqs. B1–B4) are needed. However, from integrated $\Delta^{14}C(CO_2)$ sampling, we only have the mean fossil fuel CO$_2$ and fuel CO$_2$ values and can thus, only calculate $\langle \Delta y_F \rangle$. Using the product (or ratio) of the means rather than the mean of the product (ratio) is only correct if the factors are uncorrelated. Since, the factors in Eqs. (B1)–(B4) (and Δx and Δy_F) are correlated, the integrated calibration cannot be applied without introducing a bias into monthly mean $\langle \delta_F \rangle$, $\langle \delta_{ff} \rangle$, $\langle \delta_{F-tr} \rangle$ and $\langle R_F \rangle$. Instead of using integrated $\Delta^{14}C(CO_2)$ samples in order to obtain the monthly fossil fuel CO$_2$ values, it is possible to take grab samples, analyse these for $\Delta^{14}C(CO_2)$ (and with that y_F), total CO$_2$, $\delta^{13}C(CO_2)_{tot}$ and CO in order to calculate the individual (non-averaged) values for δ_F, δ_{F-tr}, δ_{ff} and R_F (see Sect. 4).

Appendix C: Influence of more depleted fuel $\delta^{13}C(CO_2)$ signatures

We have argued that we only require a realistic set of input parameters, rather than an absolutely correct set of parameters to estimate uncertainties of the different tracer methods. However, the results presented so far are to some degree dependent on the emission characteristics used in our model (see Table A1). When using CO as tracer for fuel CO$_2$, it would be advantageous if natural sources of CO were negligible and if the emission ratio R_F would be the same for all sources. When using CO$_2$ as tracer for fuel CO$_2$, biospheric CO$_2$ emissions should be negligible, and when using $\delta^{13}C(CO_2)$, it would be advantageous if fuel CO$_2$ emissions were strongly depleted compared to biospheric emissions. It is beyond the scope of this work, to show explicitly for all cases how the “choice” of different emission characteristics influences the fuel CO$_2$ estimate in terms of precision and accuracy. However, in Fig. A1, we illustrate exemplary for this latter case how the presence of more depleted fuel sources in the footprint area of the measurement site could improve the tracer $\delta^{13}C(CO_2)$ for fuel CO$_2$ estimation. This
should serve as an example, showing how much the emission characteristics at a site may influence the precision of fuel CO$_2$ estimates using different tracer configurations.

Figure A1 shows that fuel CO$_2$ can be estimated much better when the mean source mix in the catchment area of the measurement site exhibits a strongly depleted isotopic source signature. The regression coefficient improves from 0.94 to 0.99 and the precision within one year decreases significantly by 40% when choosing δF 7% more depleted (-39% instead of -32%). The precision of $\delta^{13}C$(CO$_2$)-based fuel CO$_2$ will increase with decreasing isotopic signature of fuel CO$_2$ sources. Analogously, the precision of CO-based fuel CO$_2$ estimates will increase with decreasing inhomogeneity of CO/CO$_2$ ratio of fuel CO$_2$ sources. This effect should be taken into account when designing a measurement network and thus highlights the importance of a thorough source evaluation in the catchment area prior to instrumental installation.

Acknowledgements. We thank Ute Karstens and Thomas Koch for valuable modelling lessons and help with setting up the model. We are also thankful for valuable discussions on fossil fuel CO$_2$ in Heidelberg with Felix R. Vogel and Samuel Hammer. This work has been funded by the InGOS EU project (284274) and ICOS BMBF project (01LK1225A).

References

necki, A.: Evaluation of SF₆, C₂Cl₄ and CO to approximate fossil fuel CO₂ in the Northern
Hemisphere using a chemistry transport model, J. Geophys. Res., 111, D16311,

Schmidt, A., Rella, C. W., Göckede, M., Hanson, C., Yang, Z., and Law, B. E.: Removing traffic
emissions from CO₂ time series measured at a tall tower using mobile measurements and
transport modeling, Atmos. Environ., 97, 94–108, doi:10.1016/j.atmosenv.2014.08.006,
2014.

Steinbach, J., Gerbig, C., Rödenbeck, C., Karstens, U., Minejima, C., and Mukai, H.: The CO₂
release and Oxygen uptake from Fossil Fuel Emission Estimate (COFFEE) dataset:
effects from varying oxidative ratios, Atmos. Chem. Phys., 11, 6855–6870, doi:10.5194/acp-

particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474,

1977.

Stuiver, M. and Quay, P. D.: Atmospheric ¹⁴C changes resulting from fossil fuel CO₂ release

and Ehleringer, J. R.: Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth
Coniferous Forest, Ecosystems, 18, 1–12, 2015.

system for global-to-regional downscaling of CO₂ concentration estimation, Atmos. Chem.

Turnbull, J. C., Miller, J. B., Lehman, S. J., Tans, P. P., Sparks, R. J., and Southon, J.: Com-
parison of ¹⁴CO₂, CO, and SF₆ as tracers for recently added fossil fuel CO₂ in the atmos-
phere and implications for biological CO₂ exchange, Geophys. Res. Lett., 33, L01817,

Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans, P. P., Davis, K.
J., Lauvaux, T., Miles, N. L., Richardson, S. J., Cambaliza, M. O., Shepson, P. B., Gurney,
K., Patarasuk, R., and Razzivanov, I.: Toward quantification and source sector identification
Widory, D., Proust, E., Bellenfant, G., and Bour, O.: Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO$_2$ levels: The added value of the isotope (δ^{13}C and δ^{18}O CO$_2$; δ^{13}C and δD CH$_4$) approach, Waste Manage, 32, 1685–1692, 2012.
Zondervan, A. and Meijer, H. A. J.: Isotopic characterisation of CO$_2$ sources during re-
gional pollution events using isotopic and radiocarbon analysis, Tellus B, 48, 601–612,
Table 1. δ^{13}C(CO$_2$) source signature of fuel types and biosphere as used in the model. The isotopic signature of the biosphere follows the findings of Ballantyne et al. (2011) for Europe. The assigned isotopic fuel values were chosen from mean measured isotopic signatures in Heidelberg (Kaul, 2007 and unpublished data) or if not available, are similar to isotopic δ^{13}C(CO$_2$) values reported in Andres et al. (1994) or (for biogas) Widory et al. (2012).

<table>
<thead>
<tr>
<th>Emission source</th>
<th>$\delta_{ff,i}$, $\delta_{bf,j}$ or δ_{bio} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard coal</td>
<td>−27</td>
</tr>
<tr>
<td>Brown coal</td>
<td>−29</td>
</tr>
<tr>
<td>Peat</td>
<td>−30</td>
</tr>
<tr>
<td>Solid waste</td>
<td>−30</td>
</tr>
<tr>
<td>Heavy oil</td>
<td>−31</td>
</tr>
<tr>
<td>Light oil</td>
<td>−31</td>
</tr>
<tr>
<td>Natural gas</td>
<td>−48</td>
</tr>
<tr>
<td>Derived gas</td>
<td>−30</td>
</tr>
<tr>
<td>Solid biomass</td>
<td>−29</td>
</tr>
<tr>
<td>Bio liquid</td>
<td>−31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biosphere</th>
<th>δ [‰]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>−27</td>
</tr>
<tr>
<td>Feb</td>
<td>−26</td>
</tr>
<tr>
<td>Mar</td>
<td>−25</td>
</tr>
<tr>
<td>Apr</td>
<td>−24</td>
</tr>
<tr>
<td>May</td>
<td>−23</td>
</tr>
<tr>
<td>Jun</td>
<td>−22</td>
</tr>
<tr>
<td>Jul</td>
<td>−22</td>
</tr>
<tr>
<td>Aug</td>
<td>−23</td>
</tr>
<tr>
<td>Sep</td>
<td>−24</td>
</tr>
<tr>
<td>Oct</td>
<td>−25</td>
</tr>
<tr>
<td>Nov</td>
<td>−26</td>
</tr>
<tr>
<td>Dec</td>
<td>−27</td>
</tr>
</tbody>
</table>
Table 2. Tracer or tracer combinations, required parameters and formula for estimation of targeted fuel CO$_2$ concentration. In cases (c) and (d) we further divide fuel CO$_2$ into traffic CO$_2$ and non-traffic CO$_2$, or fossil fuel CO$_2$ and biofuel CO$_2$, respectively. In case (f) we can only estimate fossil fuel CO$_2$ with Δ^{14}C(CO$_2$) and therefore lack biofuel CO$_2$ for a comprehensive fuel CO$_2$ estimate.

<table>
<thead>
<tr>
<th>Case</th>
<th>Required parameters</th>
<th>Formula (for derivation see Appendix A1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) CO$_2$</td>
<td>R_F</td>
<td>$y_F = \Delta y$</td>
</tr>
<tr>
<td>(b) CO</td>
<td>\bar{R}_F</td>
<td>$y_F = \frac{\Delta x}{R_F}$</td>
</tr>
<tr>
<td>(c) CO(tr) + δ^{13}C(CO$_2$)</td>
<td>$\bar{R}{tr}$, $m{tr}$, δ_{tr}, δ_{F-tr}</td>
<td>$y_F = \frac{\Delta x(t) \bar{m}{tr}}{R{tr}} + \frac{y_{tot} \delta_{tot} - y_{bg} \delta_{bg}}{\delta_{F-tr} - \delta_{bio}} - \frac{y_{tot} - y_{bg} - y_{tr}}{\delta_{bio} - \delta_{bio}} - \frac{y_{tot} - y_{bg} - y_{tr}}{\delta_{bio} - \delta_{bio}}$</td>
</tr>
<tr>
<td>(d) CO(bf) + δ^{13}C(CO$_2$)</td>
<td>$\bar{R}{bf}$, $m{bf}$, δ_{bf}, δ_{ff}</td>
<td>$y_F = \frac{\Delta x(t) \bar{m}{bf}}{R{bf}} + \frac{y_{tot} \delta_{tot} - y_{bg} \delta_{bg}}{\delta_{bf} - \delta_{bio}} - \frac{y_{tot} - y_{bg} - y_{bf}}{\delta_{bio} - \delta_{bio}} - \frac{y_{tot} - y_{bg} - y_{bf}}{\delta_{bio} - \delta_{bio}}$</td>
</tr>
<tr>
<td>(e) δ^{13}C(CO$_2$)</td>
<td>$\bar{\delta}_F$</td>
<td>$y_F = \frac{\Delta x(t) \bar{m}F}{R_F} + \frac{y{tot} \delta_{tot} - y_{bg} \delta_{bg}}{\delta_{F} - \delta_{bio}} - \frac{y_{tot} - y_{bg} - y_{F}}{\delta_{bio} - \delta_{bio}} - \frac{y_{tot} - y_{bg} - y_{F}}{\delta_{bio} - \delta_{bio}}$</td>
</tr>
<tr>
<td>(f) Δ^{14}C(CO$_2$)</td>
<td>Δ^{14}C${bf}$, Δ^{14}C${bio}$</td>
<td>$y_F \approx y_f = \frac{y_{bf}(\Delta^{14}C{bio}-\Delta^{14}C{bf}) - y_{tot}(\Delta^{14}C{tot}-\Delta^{14}C{bio}) - y_{tot}(\Delta^{14}C{bio}-\Delta^{14}C{bf})}{1+\Delta^{14}C_{bio}}$</td>
</tr>
</tbody>
</table>
Table 3. Mean difference of tracer-based estimate and modelled (as correct assumed) fuel CO₂ in µmol mol⁻¹ for the tracers CO and δ¹³C(CO₂) for different sampling strategies and respective standard deviation (both determined from a Gaussian fit to the difference histogram) for an urban setting (here: Heidelberg). Depending on the random selection of grab samples, the bias of the calibration with annually distributed grab samples is sometimes positive and sometimes negative. Therefore, the mean absolute difference between the modelled and calibrated value was determined in a Monte-Carlo simulation and is denoted with a “±” in front of the mean value to show that the bias does not have a unique sign. The standard deviation denotes the 1σ uncertainty of the difference, which is always bi-directional. Note, that we only show the results for CO and δ¹³C(CO₂), since the results when using a combination of these tracers is very similar to those of the δ¹³C(CO₂)-method. Measurement uncertainties are included in all calibration methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>CO-Method</th>
<th>δ¹³C(CO₂)-Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Summer</td>
<td>Winter</td>
</tr>
<tr>
<td>No uncertainties, monthly median values known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(as shown in Fig. 1)</td>
<td>−0.1 ± 0.7</td>
<td>−0.2 ± 1.1</td>
</tr>
<tr>
<td>Measurement uncertainties included, monthly</td>
<td>−0.2 ± 4.9</td>
<td>−0.3 ± 4.8</td>
</tr>
<tr>
<td>median values known (as shown in Fig. 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration with integrated samples (method 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 24</td>
<td>−1.5 ± 6.5</td>
<td>−1.2 ± 5.2</td>
</tr>
<tr>
<td>Calibration with annually distributed grab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>samples (method 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 24, n = 96</td>
<td>±0.9 ± 5.7</td>
<td>±1.4 ± 5.2</td>
</tr>
<tr>
<td></td>
<td>±0.6 ± 5.4</td>
<td>±1.1 ± 5.0</td>
</tr>
<tr>
<td>Calibration with seasonal grab sample calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(method 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 24, n = 96</td>
<td>±1.1 ± 5.9</td>
<td>±1.5 ± 5.3</td>
</tr>
<tr>
<td></td>
<td>±0.6 ± 5.4</td>
<td>±1.0 ± 4.9</td>
</tr>
<tr>
<td>Seasonal event calibration (method 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 24, n = 96</td>
<td>±1.1 ± 6.0</td>
<td>±1.5 ± 5.3</td>
</tr>
<tr>
<td></td>
<td>±1.2 ± 6.2</td>
<td>±1.8 ± 5.4</td>
</tr>
</tbody>
</table>
Table A1. Annual or half-yearly (summer = S, winter = W) averaged Δ^{14}C(CO_2), δ^{13}C(CO_2), ΔCO / ΔCO_2 ratios and mean fraction of CO_2 and CO relative to total CO_2 and CO offsets as used in our model study for the measurement site Heidelberg for the year 2012. Biosphere Δ^{14}C(CO_2) values are based on Taylor et al. (2015). The ΔCO / ΔCO_2 ratio and the fractions of CO_2 and CO offset were taken from the STILT model runs, which were fed with anthropogenic emissions from the EDGAR emission inventory. Note, that fractions of biofuels in traffic CO_2 emissions are not included. δ values were derived by assigning an isotopic value to each fuel type and weighting these depending on the respective share of the fuel type to total fuel CO_2 at the measurement site. The δ values of the biosphere are the half-yearly mean values from Table 1. Analogously, R_x (and Δ^{14}C_x) values were derived by assigning an emission ratio CO / CO_2 (and Δ^{14}C(CO_2) value) to each emission sector and weighting these depending on the respective share of the emission sector to total fuel CO_2 at the site. The two main sector fuel CO_2 and biospheric CO_2 are written in bold and add up to 100 %.

<table>
<thead>
<tr>
<th>Emission group</th>
<th>Δ^{14}C(CO_2) [%]</th>
<th>δ^{13}C [%]</th>
<th>(\bar{R}_x = (\Delta CO / \Delta CO_2)_x) [(nmol mol(^{-1})] (μmol mol(^{-1}))(^{-1})]</th>
<th>% of ΔCO_2</th>
<th>% of ΔCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>W</td>
<td>S</td>
<td>W</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Fuel CO_2</td>
<td>−995</td>
<td>−31.5</td>
<td>−33.5</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Fossil fuel CO_2 (excl. biofuels)</td>
<td>−1000</td>
<td>−32</td>
<td>−34</td>
<td>2</td>
<td>45</td>
</tr>
<tr>
<td>Biofuel CO_2</td>
<td>90</td>
<td>−27</td>
<td>−28</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>Fuel CO_2 excl. traffic CO_2 (but incl. biofuels)</td>
<td>−990</td>
<td>−31.5</td>
<td>−33.8</td>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>Traffic fuel CO_2</td>
<td>−1000</td>
<td>−31</td>
<td>−31</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Biospheric CO_2</td>
<td>60</td>
<td>−23</td>
<td>−25.5</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>
Table A2. List of acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS</td>
<td>Accelerator mass spectrometry</td>
</tr>
<tr>
<td>bf</td>
<td>Biofuel</td>
</tr>
<tr>
<td>bg</td>
<td>Background</td>
</tr>
<tr>
<td>bio</td>
<td>Biosphere</td>
</tr>
<tr>
<td>EDGAR</td>
<td>Emissions Database for Global Atmospheric Research</td>
</tr>
<tr>
<td>F</td>
<td>Fuel</td>
</tr>
<tr>
<td>F-bf</td>
<td>Fuel excluding biofuels (= ff)</td>
</tr>
<tr>
<td>ff</td>
<td>Fossil fuel</td>
</tr>
<tr>
<td>F-tr</td>
<td>Fuel excluding traffic</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>ICOS</td>
<td>Integrated Carbon Observation System</td>
</tr>
<tr>
<td>IQR</td>
<td>Inter-quartile range</td>
</tr>
<tr>
<td>m_x</td>
<td>CO share of emission group x to CO offset</td>
</tr>
<tr>
<td>NPP</td>
<td>Nuclear power plant</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million, equivalent to µmol mol$^{-1}$</td>
</tr>
<tr>
<td>ppb</td>
<td>Parts per billion, equivalent to nmol mol$^{-1}$</td>
</tr>
<tr>
<td>R_x</td>
<td>Ratio of CO to CO$_2$ in the emission group x</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>STILT</td>
<td>Stochastic Time-Inverted Langrangian Particle model</td>
</tr>
<tr>
<td>tot</td>
<td>Total</td>
</tr>
<tr>
<td>x</td>
<td>CO mole fraction</td>
</tr>
<tr>
<td>y</td>
<td>CO$_2$ mole fraction</td>
</tr>
</tbody>
</table>
Figure 1. Histograms showing the differences between the modeled fuel CO$_2$ (assumed as correct) and the tracer-based estimated fuel CO$_2$ for the year 2012 for Heidelberg using the different tracers and tracer configurations listed in Table 2. Differences result from sub-monthly variations of parameters. Note the different y axis scale. Darker colors denote the winter periods and lighter colors the summer periods (see legend). The distributions were fitted with a Gaussian fit and the shift (μ) and the standard deviation (σ) for the Gaussian fits are given in the figure. Since the histograms do not follow Gaussian distributions (especially for 14C(CO$_2$) due to not normally distributed biofuel CO$_2$ contributions within one year) we also give the Interquartile range (IQR) in the figure to remind the reader that the uncertainty may be underestimated when using the Gaussian standard deviation for uncertainty analysis. The CO$_2$ mole fractions are given in parts per million (ppm), which is equivalent to μmol mol$^{-1}$. Note that in Heidelberg, mean fuel CO$_2$ for summer is 15 μmol mol$^{-1}$ and for winter is 16 μmol mol$^{-1}$.
Figure 2. Same as Fig. 1, but for Gartow. In Gartow, mean fuel CO$_2$ for summer is 2 µmol mol$^{-1}$ and for winter is 4 µmol mol$^{-1}$.
Figure 3. Same as Fig. 1, but for Berlin. In Berlin, mean fuel CO$_2$ for summer is 23 µmol mol$^{-1}$ and for winter is 27 µmol mol$^{-1}$.
Figure 4. Sensitivity analysis: Median difference between the modelled fuel CO$_2$ and the tracer-based estimated fuel CO$_2$ value (y axis) at a typical urban site (Heidelberg) when using parameters/variables for fuel CO$_2$ estimation (“assumed”) deviating from the correct parameters/variables used in STILT. The error bars given at $x = 0$ (assumed value = model value) denote the Inter-quartile ranges (IQR) for all x positions. If the IQRs vary depending on the assumed value, the errors (IQRs) are drawn as shaded areas.
Estimation of continuous anthropogenic CO$_2$

S. N. Vardag et al.

Figure 5. Same as Fig. 1, but now also including measurement imprecision.
Figure 6. Same as Fig. 2, but now also including measurement imprecision.
Figure 7. Same as Fig. 3, but now also including measurement imprecision.
Figure 8. Comparison of median diurnal cycle of fuel CO$_2$ given in model reference or estimated with one of six different tracer methods at the measurement station Heidelberg. Error bars denote the standard error of the fuel CO$_2$ estimate at each hour for the respective half year. The diurnal cycle of the CO + δ^{13}C(CO$_2$) methods are not shown, since they are very similar to the δ^{13}C(CO$_2$) method.
Figure A1. (a) Example period showing fuel CO$_2$ of different fuel CO$_2$ estimation methods and reference modelled fuel CO$_2$. Dark blue: Mean δ_F is $-32\%o$, cyan: mean δ_F is $-39\%o$.

(b) Correlation plot between estimated and modelled fuel CO$_2$ for mean $\delta_F = -32\%o$ (dark blue and solid line) and mean $\delta_F = -39\%o$ (cyan and dotted line) during entire year 2012. Fuel CO$_2$ can be estimated much better using $\delta^{13}C$(CO$_2$) when the fuel $\delta^{13}C$ signature is strongly depleted with respect to the biosphere. Note, that the slope slightly changes when using more depleted sources. This is because few high fuel CO$_2$ peaks span the linear regression and therefore determine the slope to a large degree, but as a general tendency for the Heidelberg data set the high fuel CO$_2$ peaks exhibit an isotopic signature, which is more enriched as the isotopic signature of the mean fuel source mix.