First-principles nanoplasmonics on metal-clusters dimers

Alejandro Varas\(^1\), Pu Zhang\(^2\), Johannes Feist\(^2\), Pablo García-González\(^2\), F. J. García-Vidal\(^3\) and Angel Rubio\(^1,3\)

Introduction and objectives

- **Metal-cluster dimers** are a prototypical scenario for quantum plasmonics. The well-known hybridization of localized surface plasmons (LSPs) is strongly affected by the appearance of light-induced currents between the nanoparticles, breaching down the predictions of classical optics [1].

<table>
<thead>
<tr>
<th>Absorption cross section of metallic-cluster dimer (arb. units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.5</td>
</tr>
</tbody>
</table>

- The main trends can be well understood using the jellium model and time-dependent density functional theory (TDDFT). However, atomic structure has to be considered to have results with enough predictive accuracy [2].
- In this work we provide further insights on the importance of the atomic structure, including effects due to the relative orientation of the atoms and relaxation of the atoms in the gap region.

Optical absorption

- First we evaluate the optical absorption spectra for both F2F and E2E orientations.
 - **a)** Minor differences: \(d \geq 0.6 \text{ nm} \).
 - **b)** Minor differences: \(d \leq 0.1 \text{ nm} \).
 - **c)** Orientation matters: \(0.1 \text{ nm} < d < 0.6 \text{ nm} \).

- CT current and \(E \) field
 - We now analyze the resonant CT intensities and the \(E \)-field enhancement for selected modes.
 - **a)** Charge-transfer modes (D,Q) \(d \leq 0.1 \text{ nm} \).
 - **b)** “Tunnelling” mode (Q) \(d = 0.3 \text{ nm} \).
 - **c)** Coupled D mode (weak CT) \(d = 0.5 \text{ nm} \).

CT intensities and total \(E \) field at \(O \) (E2E)

- In a): Conductive charge transfer. Note the different phase shifts in D and Q.
- In b): Main Q mode after the quenching of the D mode. The dynamics are strongly linked with the induced tunnel current.
- In c): Main D mode slightly influenced by weak tunnelling.

The different atomic arrangement (E2E and F2F) are manifest in case b). At that distance the main mode is D for the F2F orientation.

Setup and method

- We analyze the optical response of \(\text{Na}_{297} \) icosahedral clusters dimers with two different relative orientations, edge-to-edge (E2E) and face-to-face (F2F), varying the distance between them. The structure of the atoms around the gap region is optimized in the E2E case.

- We define the distance between the clusters as \(d = b - 2R \), where \(b \) is the distance between the center of the clusters, and \(2R = 2.62 \text{ nm} \) an effective cluster diameter. We focus on the range \(d \leq 0.6 \text{ nm} \), where charge transfer (CT) between the clusters is not negligible.

- The optical response is evaluated using TDDFT under the adiabatic local density approximation (LDA). Only the 3s conduction electrons are explicitly included in the calculations by using standard norm-conserving Troullier-Martins pseudopotentials. The calculations were performed in real space and real time using the Octopus [3] code.

Conclusions

By using \textit{ab initio} TDDFT calculations we analyze the optical response of metal nanoparticle dimers, demonstrating that the relative orientation of the clusters play a key role in the absorption cross section when \(0.2 \text{ nm} \leq d \leq 0.5 \text{ nm} \). This sensitivity to the atomic arrangement in the nanoparticle jounce the way to further studies relevant for molecular optoelectronics and nanosensing.

Acknowledgments

This work has been funded by the European Research Council Advanced Grant DYnano (ERC-2010-AdG Proposal No. 267374), European Research Council Advanced Grant (ERC-2011-AdG Proposal No. 290991), Spanish Grant (FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (IT-578-13), and European Commission project CRONUS (Grant number 280879-2 CRONUS-CP-FP).

References