The \(^9\text{Be}(p,p_0)^9\text{Be}, \(^9\text{Be}(p,d_0)^8\text{Be}, \) and \(^9\text{Be}(p,\alpha_0)^6\text{Li} \) cross-sections for analytical purposes

S. Krat\(^a\), M. Mayer\(^b\), C. Porosnicu\(^c\)

\(^a\)National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow Kashirskoe road 31, 115409, Russia

\(^b\)Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany

\(^c\)National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, Magurele, Jud Ilfov, 077125, Bucharest, Romania

Abstract

The cross-sections for the \(^9\text{Be}(p,d_0)^8\text{Be} \) nuclear reaction and for \(^9\text{Be}(p,p_0)^9\text{Be} \) backscattering were measured at a laboratory scattering angle of 165° in the energy range from 400 to 4150 keV, the cross-section for the \(^9\text{Be}(p,\alpha_0)^6\text{Li} \) nuclear reaction was determined in the energy range from 400 to 1300 keV. The cross-sections were determined using thin films. The absolute accuracies are about 4.4 – 8.6% for the backscattering, 4.6 – 24% for the \(^9\text{Be}(p,d_0)^8\text{Be} \) nuclear reaction, and 4.5 – 5% for the \(^9\text{Be}(p,\alpha_0)^6\text{Li} \) nuclear reaction cross-section. The derived cross-section data were benchmarked in the energy range 1100 – 4100 keV by comparison to measured spectra from bulk beryllium. The cross-section data are presented in graphical and tabular forms.

Keywords

Cross-section; Beryllium; Proton; Ion beam analysis; Backscattering analysis; Nuclear reaction analysis

Introduction

Beryllium is an important material for use in plasma-facing components of controlled fusion devices due to its low nuclear charge, relatively high melting point, and its ability to getter oxygen. In 2010 the first wall of the JET tokamak has been changed from carbon to beryllium and tungsten [1], with first results showing significant improvements with respect to wall erosion and hydrogen isotopes retention [2-5]. Beryllium is also planned to be used in plasma-facing components of the ITER tokamak, which is currently being built in Cadarache, France. Due to its low mass density and high elastic modulus beryllium is also being used as lightweight construction material, for example in aerospace applications. Beryllium appears naturally in some minerals (for example Beryll) and is used in some alloys, for example CuBe or CuCoBe.
Elastic backscattering spectrometry (EBS) is a versatile method for the quantitative analysis of the near-surface composition of solids. In fusion research it is often used for quantitative measurements of material erosion and deposition processes by analyzing wall samples from fusion devices [5-9]. Using EBS with incident protons makes it possible to analyze even very thick surface layers: For light elements such as Be or C layer thicknesses up to about 50 µm can be analyzed. For the analysis of thick layers large backscattering angles in the range 160° - 170° are advantageous. However, EBS requires accurate knowledge of the cross-section data to produce accurate results. The backscattering cross-section of protons from beryllium is Rutherford only at very low energies below about 230 keV [10]. At higher energies the cross-section is enhanced compared to the Rutherford cross-section. Unfortunately there are only scarce data available for the $^{9}\text{Be}(p,p_{0})^{9}\text{Be}$ backscattering cross-section, which are at least twenty years old [10-14]. Three data sets are close to a scattering angle of 160° [11, 13-14], but each covers only a limited energy range. The data by Liu [10] cover the whole energy range from 0.15 to 3 MeV at a scattering angle of 170°. At energies above 3 MeV data get very scarce, and here is a gap in the data between 3.79 and 4 MeV. For scattering angles between 161° and 170° no data are available. Sufficiently accurate theoretical data, for example from SigmaCalc, are also not available.

In addition to backscattering, there are several nuclear reactions of protons with ^{9}Be:

- $^{9}\text{Be}+p \rightarrow d_{0}+^{8}\text{Be}$ (I)
- $^{9}\text{Be}+p \rightarrow \alpha _{0}+^{6}\text{Li}$ (II)
- $^{9}\text{Be}+p \rightarrow \alpha _{1}+^{6}\text{Li}$ (III)

Reaction (I) has a relatively large cross-section in the energy range 1-2.5 MeV and has to be taken into account when analyzing thick Be layers. The lifetime of the produced ^{8}Be is very short and it further disintegrates into two α-particles. Cross-section data for these reactions are only available either at low energies below 900 keV [15], or for detector angles below about 138° [16-17]. The cross-section data are at least 40 years old.

Data for reactions (II) and (III) are very scarce [15-16]. The data by Bertrand et al. [15] are close to a reaction angle of 160° and cover the energy range 0.3 to 0.9 MeV. However, this data set contains only very few data points. The most comprehensive data set from Thomas et al. [16] was published already in the year 1949 and is for a reaction angle of 138°.

In this paper, cross-section data for $^{9}\text{Be}(p,p_{0})^{9}\text{Be}$ backscattering and for the $^{9}\text{Be}(p,d_{0})^{8}\text{Be}$ and $^{9}\text{Be}(p,\alpha_{0})^{6}\text{Li}$ nuclear reactions are presented at an angle of 165°.

Experimental

The measurements were performed using a beryllium-compatible glove box at the 3 MV tandem accelerator of the Max-Planck-Institut für Plasmaphysik in Garching. The accuracy of the incident beam energy is about ±10 keV. This was determined by using the $^{27}\text{Al}(p,\gamma)^{28}\text{Si}$ reaction at 992 keV, by matching peak positions from an Al EBS spectrum modeled using the SigmaCalc cross-section [18] at 1598 keV and by matching peak positions from an Al EBS
spectrum modeled using the cross-section from [19] at 2890 keV. The incident beam energy spread is below 1 keV. The backscattering spectrum and nuclear reaction products were recorded using a detector with a solid angle of 1.72×10^{-3} sr located at a scattering angle of 165°. The scattering angle is known with an accuracy better than ±1°, and the error of the solid angle is 1.5%. The solid angle was determined by measuring four GEEL calibration samples: (22.4±0.4) μg/cm² Au on Si, (48.1±0.6)×10¹⁵ at/cm² Sb implanted in Si/SiO₂, (34.0±2.4) μg/cm² Pd on vitreous carbon and (22.0±0.6) μg/cm² Ti on vitreous carbon, and averaging the results. The uncertainty of the solid angle was calculated as the scatter of multiple measurements.

Three samples were used to measure the cross-sections in different energy ranges. The samples consisted of polished pyrolytic graphite with a sputter-deposited Al layer on top: 3.3×10^{18} at/cm², 27×10^{18} at/cm² and 58×10^{18} at/cm², respectively. On top of the aluminum a thin Au layer with a thickness of 7.7×10^{16} at/cm² was evaporated, and on top of the gold a Be layer with a thickness of 4.4×10^{18} at/cm² was deposited using a thermionic vacuum arc [20]. The thicknesses of the Al layers were checked with EBS prior to the Au evaporation using the SIMNRA code [21] with SRIM 2013 stopping powers [22] and backscattering cross-section data from [19]. The purpose of the Al layers was to shift the signal of the C substrate towards lower energies in order to separate it from the Be signal, so that the Be signal could be measured more precisely with smaller background contribution from the substrate.

The samples for the cross-section measurements were analyzed with proton energies from 400 to 4150 keV with a 50 keV step and 5 μC of charge per measurement. In addition, bulk Be and Au samples were measured as benchmark with energies from 1.1 to 3.7 MeV with a 200 keV step and 5 μC of charge per measurement. The bulk Be sample was clean enough that no distinctive peaks of other elements than oxygen were observed in the EBS spectra. The detected amount of O on the Be bulk sample was about 4×10^{16} at/cm².

Experimental results

3.1. Be/Au/Al/C multilayers

Typical spectra for bombardment of the multilayered samples 1, 2 and 3 with 2.2 MeV protons are shown in Fig. 1a, b and c respectively. The Au and Al peaks are well separated from the C background and from each other. The 9Be(p,d₀)8Be reaction peak and the 9Be(p,p₀)9Be backscattering peak can also be easily distinguished from each other. In Fig. 1a the 9Be(p,d₀)8Be reaction peak and the 9Be(p,p₀)9Be backscattering peak overlap with the signal from the carbon substrate, and in Fig. 1c they overlap with the Al peak. In Fig. 1b both Be peaks are located between the C and Al signals with only little background, resulting in a decreased statistical error for the peak integrals. Depending on incident beam energy this required varying Al layer thicknesses. Incident proton energy ranges and the corresponding sample numbers in which a low background similar to Fig. 1b could be achieved are shown in table 1. Within energy ranges not listed in table 1 overlap with the signal from the carbon substrate could not be avoided, resulting in larger statistical uncertainties. It should be also noted that for energies from 2.45 to 2.95 MeV the energies of backscattered protons and of deuterons from the 9Be(p,d₀)8Be reaction
overlap and can’t be distinguished (Fig 2). In that energy range, only the sum of the cross-sections was obtained. Alpha particles originating from the $^9\text{Be}(p,\alpha_0)^6\text{Li}$ reaction could be reliably separated from background or other peaks only at energies below 1.3 MeV. A typical spectrum for bombardment of the multilayered sample 1 with 1.3 MeV protons is shown in Fig 3 – a low, wide $^9\text{Be}(p,\alpha_0)^6\text{Li}$ nuclear reaction peak can be seen at energies above the Au backscattering peak. Alpha particles originating from the $^9\text{Be}(p,\alpha_1)^6\text{Li}$ reaction couldn’t be reliably discerned from background at any energy.

The differential cross-sections $\sigma_{^9\text{Be}}$, σ_{d_0} and σ_{α_0}, the backscattering from ^9Be, for the $^9\text{Be}(p,d_0)^8\text{Be}$ reaction and for the $^9\text{Be}(p,\alpha_0)^6\text{Li}$ reaction, respectively, are given by

$$\sigma_{^9\text{Be}} = \frac{N_{^9\text{Be}}}{N_{Au}} \frac{\rho_{d_0}}{\rho_{Be}} \sigma_{Au}$$

$$\sigma_{d_0} = \frac{N_{d_0}}{N_{Au}} \frac{\rho_{Au}}{\rho_{Be}} \sigma_{Au}$$

$$\sigma_{\alpha_0} = \frac{N_{\alpha_0}}{N_{Au}} \frac{\rho_{Au}}{\rho_{Be}} \sigma_{Au}$$

where $N_{^9\text{Be}}$, N_{d_0} and N_{α_0} are the number of protons backscattered from ^9Be, the number of detected deuterons in the d_0 peak and the number of detected alpha particles in the α_0 peak respectively, ρ_{d_0}/ρ_{Be} is the ratio of the areal densities of the gold and beryllium layers, N_{Au} is the number of protons backscattered from the Au layer, and σ_{Au} the cross-section for proton backscattering from gold. Eqs. (1), (2) and (3) use only count ratios measured within the same spectrum, and uncertainties of the solid angle and of beam charge integration cancel out in eqs. (1), (2) and (3). The cross-section for backscattering from gold is Rutherford at energies below about 9 MeV. One can therefore use

$$\sigma_{d_0} = f \sigma_{Au}^R$$

where σ_{Au}^R is the Rutherford cross-section for proton backscattering and f is a small correction factor close to unity due to electron shielding of the Au nuclear charge. Andersen screening [23] was used to calculate the screened cross-section. The deviation of f from unity is below 0.5% for incident proton energies above 1.7 MeV.

The energy losses of protons in the Au and Be layers were calculated using SRIM-2013 stopping power data. The energy losses in the Au layer are smaller than 5.8 keV and smaller than 23 keV for the Be layers. The largest energy losses occur at the lowest energies and get smaller with increasing energy. These energy losses were taken into account in the calculation of the mean energy in each layer. To account for changes in the cross-sections within the layers, mean energies were used according to
\[
\bar{E}_{\text{Be}} = E_0 - \frac{\Delta E_{\text{Be}}}{2} \tag{1}
\]

\[
\bar{E}_{\text{Au}} = E_0 - \Delta E_{\text{Be}} - \frac{\Delta E_{\text{Au}}}{2} \tag{1}
\]

where \(E_0 \) is the incident proton energy, \(\bar{E}_{\text{Be}} \) and \(\bar{E}_{\text{Au}} \) the mean energies in the Be and Au layers respectively, and \(\Delta E_{\text{Be}}, \Delta E_{\text{Be}} \) and \(\Delta E_{\text{Au}}, \Delta E_{\text{Au}} \) the energy losses in the Be and Au layers, respectively.

By using the ratio to the Rutherford cross-section from gold according to eq. (2) the relative shape of the cross-section as function of energy can be determined. For absolute cross-section values the ratio of the areal densities of Au and Be must be known. This ratio can be determined by using either protons at sufficiently low energies, so that the scattering cross-sections from Au and Be are both Rutherford, or by using incident \(^4\text{He}\) ions at sufficiently low energies [24]. Backscattering of protons from Be gets Rutherford at energies below about 300 keV [10], and below about 1300 keV for \(^4\text{He}\) [25]. Unfortunately it was not possible to measure at these low energies due to the thickness of the Be layer. Because of this, data obtained from a bulk beryllium sample were used for absolute calibration. Using the bulk beryllium sample at 2.1 MeV incident proton energy, the cross-sections for the \(^9\text{Be}(p,d)\)\(^8\text{Be}\) reaction and \(^9\text{Be}(p,p\alpha)\)\(^7\text{Be}\) backscattering were scaled to provide the best possible fit (Fig. 4). The alpha particle signal of the \(^8\text{Be} \rightarrow 2\times^4\text{He}\) fission reaction and the \(^9\text{Be} + p \rightarrow \alpha + ^6\text{Li}\) reaction was extrapolated (Fig. 4, dashed line) and subtracted from the data. This absolute calibration relies on the SRIM 2013 stopping power for protons in beryllium, which is accurate within about 4\% [22]. Moreover, this absolute calibration needs to use the measured values for detector solid angle times integrated beam charge, which increases the total uncertainty to 4.3\%. In order to check the accuracy of the measurement of detector solid angle times integrated beam charge a bulk gold sample was measured as well and simulated using the screened Rutherford cross-section (eq. 4) and SRIM-2013 stopping powers. The simulated spectrum agreed with the measured spectrum within about 4\%, i.e. within the uncertainty of the SRIM stopping power. This shows that our normalization procedure is correct within the given uncertainties.

3.2. The \(^9\text{Be}(p,p\alpha)\)\(^7\text{Be}\) backscattering cross-section

The \(^9\text{Be}(p,p\alpha)\)\(^7\text{Be}\) backscattering cross-section was determined using eq. (1) and absolutely quantified by using the bulk Be spectrum (see section 3.1 and Fig. 4). The differential cross-section in the laboratory system is shown in fig. 5 together with the data from Liu [10], Allab [11], Yasue [12], Mashkarov [13], and Tsan [14]. The determined cross-section values are tabulated in table 2. The proton energy in this table is the mean energy in the beryllium layer. For the energy range of incident protons from 2450 keV to 2950 keV protons backscattered from \(^9\text{Be}\) and deuterons from the \(^9\text{Be}(p,d)\)\(^8\text{Be}\) nuclear reaction overlap. Because in general the \(^9\text{Be}(p,p\alpha)\)\(^7\text{Be}\) cross-section is much higher than the \(^9\text{Be}(p,d)\)\(^8\text{Be}\) cross-section, the cross-section for the sum of reactions obtained in this range was assumed to be cross-section of \(^9\text{Be}(p,p\alpha)\)\(^7\text{Be}\). However, it should be kept in mind that cross-section data from the energy range 2450-2950 keV should be used with some care.
The error bars take into account the statistical error for the \(p_0 \) and Au peak integrals ranging from 1.2% to 7.5% with an average error of 3%, the uncertainty of the solid angle for the bulk beryllium measurements (1.5%), and the uncertainty of the SRIM 2013 stopping power used to quantify the cross-section (4.0%). Where possible, data from two samples were used to calculate the average cross-section for a given energy, decreasing the statistical error. The total uncertainty is between 4.4 and 8.6%, with an average uncertainty of 5.4%. The shape of the cross-section curve and the absolute values of the cross-section are in good agreement with Liu’s data for 170°, as well as with Allab’s data for 158.3°, Tsan’s data for 158.7° and Yasue’s data for 150°. The maximum close to 2.5 MeV is smaller in Mashkarov’s data at 160.9°, while our data are in good agreement with Liu. The position of the peak is the same in our work, Mashkarov and Liu.

3.3. The \(^9\text{Be}(p,d_0)^8\text{Be} \) nuclear reaction cross-section

The relative shape of the \(^9\text{Be}(p,d_0)^8\text{Be} \) nuclear reaction cross-section was determined from eq. (2) and absolutely quantified by using the bulk Be spectrum (see section 3.1 and Fig 4). The differential cross-section in the laboratory system is shown in fig. 6 together with the data from Bertrand [15], Thomas [16], and Weber [17]. The cross-section values are tabulated in table 3. The incident protons lose between 4.6 and 22.7 keV in the Be layer for incident energies between 400 and 4150 keV. The proton energy in table 2 is the mean energy in the beryllium layer.

The deuterons from the \(^9\text{Be}(p,d_0)^8\text{Be} \) nuclear reaction overlap with protons backscattered from \(^9\text{Be} \) for incident proton energies from 2450 to 2950 keV, see Fig. 2. Within this energy range the \(^9\text{Be}(p,d_0)^8\text{Be} \) nuclear reaction cross-section therefore cannot be determined.

The error bars take into account the statistical error for the number of counts in the \(d_0 \) and Au peaks ranging from 1.7% to 23% with an average error of 11%, the uncertainty for the product of solid angle times integrated beam charge for the bulk beryllium measurement used for absolute quantification of the cross-section (1.5%), and the uncertainty of the SRIM 2013 stopping power [22] (4.0%). Where possible, data from two samples were used to calculate the average cross-section for a given energy, decreasing the statistical error. The resulting total uncertainty for the cross-section is between 4.6% and 24% with an average uncertainty of about 12%. The highest uncertainties are in the range of incident energies from 3 to 4.15 MeV.

At energies below about 1.3 MeV our data are in good agreement with Bertrand, who measured at a comparable angle, but also with Thomas and Weber despite the fact that they measured at reaction angles of 135-138°. At energies above about 1.3 MeV the shape of the cross-section curve is in general agreement with Weber’s data, indicating maxima at roughly the same energies. However, the absolute values differ from Weber’s data by up to a factor of 2. It should be noted that there is already a discrepancy between Weber’s and Thomas’ data at the highest energies, with good agreement of our data with Thomas but disagreement with Weber. The detection angle in this work (165°) differs considerably from the angles used by Thomas (138°) and Weber (135°), which might account for the difference in absolute values. But it cannot be excluded that Weber’s data have a large systematic error above 1.3 MeV.
3.4. The 9Be(p,α)6Li nuclear reaction cross-section

The relative shape of the 9Be(p,α)6Li nuclear reaction cross-section was determined from eq. (3) and absolutely quantified by using the bulk Be spectrum (see section 3.1 and Fig 4). The differential cross-section in the laboratory system is shown in fig. 7 together with the data from Bertrand [15] and Thomas [16]. The determined cross-section values are tabulated in table 4. The proton energy in this table is the mean energy in the beryllium layer.

At energies ranging from about 0.8 MeV to about 1.2 MeV our data are in good agreement with Bertrand, who measured at a comparable angle, but also with Thomas despite the fact that they measured at a reaction angle of 138°. At energies above about 1.2 MeV our data are higher than Thomas data by about 30%. This discrepancy might be caused by the different reaction angles or by larger uncertainties in Thomas’ data.

The α_0 peak appears at energies above the incident beam energy (see Figs. 2 and 3) and is therefore almost background-free, resulting in small statistical uncertainties. The error bars take into account the statistical error for the α_0 and Au peaks ranging from 1.5% to 2.7% with an average error of 1.8%, the uncertainty of the solid angle for the bulk beryllium measurements (1.5%), and the uncertainty of the SRIM 2013 stopping power used to quantify the cross-section (4.0%). Where possible, data from two samples was used to calculate the average cross-section for a given energy, decreasing the statistical error. The total uncertainty is between 4.5 and 5%, with an average uncertainty of 4.6%.

4. Benchmark measurements

The experimentally measured spectra of a polished bulk beryllium sample and the corresponding simulations using the measured cross-section data and SRIM-2013 stopping powers are shown in figure 8 a-n for incident proton energies of 1.1, 1.3, 1.5, 1.7, 1.9, 2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 4.1 MeV. The simulations depend on the product of solid angle times ion fluence, which has been determined with an accuracy of 1.5%, and the accuracy of the stopping power of about 4%. The overall accuracy of the simulation is therefore about 4.3%. The accuracy of the benchmark measurements has been checked with a bulk Au sample at energies of 1.1, 1.3, 1.5, 1.7, 1.9, 2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 4.1 MeV. The simulations for the bulk Au sample agreed within 2 – 6% depending on energy with an average error of 4.2%, i.e. within the uncertainty of the stopping power.

The 9Be(p,α)6Li nuclear reaction was included in simulations for 1.1 and 1.3 MeV incident proton energies. At higher energies cross-section data are not available.

The simulated spectra are in good agreement with the experimental spectra at most of the energies. The general shape of the spectra is the same, and the positions of resonance peaks seen at incident energies of 1.1, 2.7, 2.9, 3.1 MeV are identical for modeled and experimental spectra.
The lower simulated signals for 1.9 MeV incident proton energy is due to the alpha particle signal of the $^8\text{Be} \rightarrow 2 \times ^4\text{He}$ and the $^9\text{Be}(p,\alpha)^6\text{Li}$ reactions, which is not accounted for due to the lack of cross-section data at that energy.

Starting from 3.1 MeV incident energy the simulated spectra indicate small peaks where none are present in the experimental data. This is due to the scatter of the measured $^9\text{Be}(p,p_0)^9\text{Be}$ backscattering cross-section at incident energies above 3 MeV. The benchmark measurements indicate that the cross-section is relatively smooth at these energies, and the scatter of the cross-section values therefore seems to have no nuclear physics origin. Because modern day simulating software [21] doesn’t take cross-section uncertainties into account, it cannot automatically compensate for such errors. To provide a practically usable cross-section for simulation purposes a smoothed version of $^9\text{Be}(p,p_0)^9\text{Be}$ backscattering cross-section was produced for incident energies range from 2.8 to 4.15 MeV. A Savitzky-Golay filter [26] was used to smooth the cross-section by 3rd order 10 point polynomials. The spectra obtained using this smoothed cross-section are shown in fig. 8i-n, and the smoothed cross-section values are shown in table 2.

Conclusions

The cross-sections for the $^9\text{Be}(p,d_0)^8\text{Be}$ nuclear reaction and for $^9\text{Be}(p,p_0)^9\text{Be}$ backscattering were measured at a laboratory scattering angle of 165° in the energy range from 400 to 4150 keV, the cross-section for the $^9\text{Be}(p,\alpha_0)^6\text{Li}$ nuclear reaction was determined in the energy range from 400 to 1300 keV. The absolute uncertainties are about 4.4 – 8.6% for the backscattering, 4.6 – 24% for the $^9\text{Be}(p,d_0)^8\text{Be}$ nuclear reaction, and 4.5 – 5% for the $^9\text{Be}(p,\alpha_0)^6\text{Li}$ nuclear reaction cross-section. The determined backscattering cross-section is in good agreement with available data for scattering angles in the range of 150° - 170° [10-14]. The determined $^9\text{Be}(p,d_0)^8\text{Be}$ nuclear reaction cross-section agrees with the data obtained by Bertrand, Thomas and Weber [15-17] at energies below about 1200 keV. At higher energies only data by Weber are available, where our data deviate by a factor of up to two. The angular dependence of the cross-section may account for this difference, but this may also indicate that Weber’s data show a systematic error. The determined $^9\text{Be}(p,\alpha_0)^6\text{Li}$ nuclear reaction cross-section agrees with the data by Bertrand and Thomas at energies below about 1.2 MeV, but disagrees with Thomas’ data at higher energies by about 30%. The determined cross-section data were benchmarked using a bulk beryllium sample in the energy range 1.1 – 4.1 MeV.

Acknowledgements

The technical assistance during all accelerator-based measurements by M. Fusseder and J. Dorner and ion-beam analysis measurements and data analysis by T. Hoffmann are gratefully acknowledged. The aluminum layers have been deposited by F. Koch, the gold layers were deposited by A. Manhard. The assistance of C. Lungu with deposition of the beryllium layers is acknowledged.
References

[15] F. Bertrand, G.Grenier, J.Poret, Study of the reactions 9Be(p,a)6Li, 9Be(p,d)8Be from 300 keV to 900 keV, in: Saclay Reports, Centre d’Etudes Nucléaires, 1968.

Table 1 – Incident proton energy ranges for the three samples in which either the $^9\text{Be}(p,p_0)^9\text{Be}$ backscattering or the $^9\text{Be}(p,d_0)^8\text{Be}$ nuclear reaction peaks did not overlap with other signals. Energies in keV.

Table 2 – Differential cross-section σ, uncertainty $\Delta\sigma$ and smoothed differential cross-section σ_{sm} for $^9\text{Be}(p,p_0)^9\text{Be}$ backscattering at a laboratory scattering angle of 165° in the energy range 400-4150 keV. The grey area from 2450-2950 keV indicates the incident proton energy range, where the data is the sum of the $^9\text{Be}(p,p_0)^9\text{Be}$ backscattering and the $^9\text{Be}(p,d_0)^8\text{Be}$ nuclear reaction cross-sections.

Table 3 – Differential cross-section σ and uncertainty $\Delta\sigma$ of the $^9\text{Be}(p,d_0)^8\text{Be}$ nuclear reaction at a laboratory reaction angle of 165° in the energy range 400-4150 keV.

Table 4 – Differential cross-section σ and uncertainty $\Delta\sigma$ of the $^9\text{Be}(p,\alpha_0)^6\text{Li}$ nuclear reaction at a laboratory reaction angle of 165° in the energy range 400-1300 keV.

Figure 1 – Typical EBS spectra for 2200 keV incident protons onto the multilayered targets with different Al thicknesses; a - 3.3×10^{18} at/cm², b - 2.7×10^{18} at/cm², c - 5.8×10^{18} at/cm². Incident angle is 0°, scattering angle is 165°.

Figure 2 – Energies of backscattered particles and nuclear reaction products vs. incident particle energy in the energy range 400-4150 keV: black solid lines – $^9\text{Be}(p,p_0)^9\text{Be}$, red dashed lines – $^9\text{Be}(p,d_0)^8\text{Be}$, blue dotted lines – $^9\text{Be}(p,\alpha_0)^6\text{Li}$ and magenta dash-dotted lines – $^9\text{Be}(p,\alpha_0)^6\text{Li}$ reactions at 165°. The vertical range indicates incident proton energies with an overlap between $^9\text{Be}(p,p_0)^9\text{Be}$ backscattering and the $^9\text{Be}(p,d_0)^8\text{Be}$ nuclear reaction.

Figure 3 - Typical EBS spectrum for 1300 keV incident protons onto the multilayered target with 3.3×10^{18} at/cm² Al thickness. Incident angle is 0°, scattering angle is 165°.

Figure 4 – EBS spectrum for 2100 keV incident protons onto a bulk beryllium sample. Data points are experimental data, the dashed line is the extrapolated alpha signal, the solid line is the sum of a modeled spectrum made using cross-section data from this work plus the extrapolated alpha signal from the $^8\text{Be} \rightarrow 2\times^4\text{He}$ fission reaction and the $^9\text{Be}+p \rightarrow \alpha_0+^6\text{Li}$ nuclear reaction. Vertical lines indicate the fitting range.

Figure 5 – Differential cross-section for $^9\text{Be}(p,p_0)^9\text{Be}$ backscattering at a laboratory scattering angle of 165° in the energy range 400-4150 keV. Black squares – this work, red circles – Liu for 170°, blue triangles – Mashkarov for 160.9°, green upside-down triangles – Tsan for 158.7°, dark yellow rhombs – Allab for 158.3°, magenta stars – Yasue for 150°, grey line – smoothed cross-section from this work.

Figure 6 – Differential cross-section for the $^9\text{Be}(p,d_0)^8\text{Be}$ nuclear reaction at a laboratory reaction angle of 165° in the energy range 400-4150 keV. Black squares – this work, red circles – Bertrand for 159.8°, blue triangles – Thomas for 138°, dark yellow upside-down triangles – Weber for 135°.
Figure 7 – Differential cross-section for the $^9\text{Be}(p,\alpha_0)^6\text{Li}$ nuclear reaction at a laboratory reaction angle of 165° in the energy range 400-1300 keV. Black squares – this work, red circles – Bertrand for 159.8°, blue triangles – Thomas for 138°.

Figure 8 – EBS spectra for 1.1, 1.3, 1.5, 1.7, 1.9, 2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 4.1 MeV incident protons onto a bulk beryllium sample. Data points are experimental data, solid lines are simulations using the cross-section data from this work, dashed lines are simulated $^9\text{Be}(p,p_0)^9\text{Be}$ backscattering spectra, dotted lines are simulated $^9\text{Be}(p,d_0)^8\text{Be}$ nuclear reaction spectra, dash-dotted lines are simulated $^9\text{Be}(p,\alpha_0)^6\text{Li}$ nuclear reaction spectra, short dashed lines are simulations using smoothed $^9\text{Be}(p,p_0)^9\text{Be}$ cross-section
Table 1

<table>
<thead>
<tr>
<th>Reaction\ Sample</th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^9\text{Be}(p,p)^9\text{Be}$</td>
<td>–</td>
<td>1.75-2.5</td>
<td>2.7-3.7</td>
</tr>
<tr>
<td>$^9\text{Be}(p,d)^8\text{Be}$</td>
<td>0.4-0.7; 1.3-1.7</td>
<td>2.05-2.45</td>
<td>3.05-3.3</td>
</tr>
<tr>
<td>E_p (keV)</td>
<td>σ (mb/sr)</td>
<td>$\Delta\sigma$ (mb/sr)</td>
<td>σ_{sm} (mb/sr)</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>490</td>
<td>157</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>591</td>
<td>109</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>692</td>
<td>85</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>792</td>
<td>58</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>812</td>
<td>53</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>833</td>
<td>49</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>853</td>
<td>39</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>873</td>
<td>32</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>893</td>
<td>26.1</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>913</td>
<td>21.0</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>933</td>
<td>18.4</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>953</td>
<td>23.5</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>973</td>
<td>52.3</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>993</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1013</td>
<td>144</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1033</td>
<td>162</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1054</td>
<td>145</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1074</td>
<td>124</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1094</td>
<td>129</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1114</td>
<td>121</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1134</td>
<td>116</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1154</td>
<td>106</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1174</td>
<td>101</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1194</td>
<td>102</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1244</td>
<td>102</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1294</td>
<td>116</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1345</td>
<td>129</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1395</td>
<td>127</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1445</td>
<td>115</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1495</td>
<td>105</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1545</td>
<td>101</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1595</td>
<td>94</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1645</td>
<td>87</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1746</td>
<td>75</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1796</td>
<td>73</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1846</td>
<td>74</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1896</td>
<td>71</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1946</td>
<td>73</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>75</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td>75</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2096</td>
<td>80</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2146</td>
<td>80</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2196</td>
<td>85</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2246</td>
<td>84</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2296</td>
<td>87</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2346</td>
<td>90</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2397</td>
<td>103</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>2447</td>
<td>122</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2497</td>
<td>180</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2547</td>
<td>203</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2597</td>
<td>119</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2647</td>
<td>83</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2697</td>
<td>67</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2747</td>
<td>57</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2797</td>
<td>53</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2847</td>
<td>45.8</td>
<td>2.6</td>
<td>46.6</td>
</tr>
<tr>
<td>2897</td>
<td>45.5</td>
<td>2.9</td>
<td>42.0</td>
</tr>
<tr>
<td>2947</td>
<td>36.8</td>
<td>2.3</td>
<td>38.9</td>
</tr>
<tr>
<td>2997</td>
<td>34.7</td>
<td>2.2</td>
<td>36.9</td>
</tr>
<tr>
<td>3047</td>
<td>37.6</td>
<td>2.4</td>
<td>35.9</td>
</tr>
<tr>
<td>3097</td>
<td>35.1</td>
<td>2.4</td>
<td>35.1</td>
</tr>
<tr>
<td>3147</td>
<td>36.4</td>
<td>1.9</td>
<td>34.6</td>
</tr>
<tr>
<td>3197</td>
<td>35.1</td>
<td>1.8</td>
<td>35.4</td>
</tr>
<tr>
<td>3247</td>
<td>33.9</td>
<td>1.7</td>
<td>35.3</td>
</tr>
<tr>
<td>3297</td>
<td>34.4</td>
<td>1.7</td>
<td>34.7</td>
</tr>
<tr>
<td>3347</td>
<td>35.9</td>
<td>1.9</td>
<td>34.7</td>
</tr>
<tr>
<td>3397</td>
<td>35.6</td>
<td>1.8</td>
<td>34.3</td>
</tr>
<tr>
<td>3447</td>
<td>32.9</td>
<td>1.7</td>
<td>34.3</td>
</tr>
<tr>
<td>3497</td>
<td>33.9</td>
<td>1.8</td>
<td>34.1</td>
</tr>
<tr>
<td>3547</td>
<td>34.6</td>
<td>1.8</td>
<td>34.4</td>
</tr>
<tr>
<td>3597</td>
<td>33.6</td>
<td>1.7</td>
<td>34.9</td>
</tr>
<tr>
<td>3647</td>
<td>35.9</td>
<td>1.9</td>
<td>35.5</td>
</tr>
<tr>
<td>3698</td>
<td>35.5</td>
<td>1.9</td>
<td>36.2</td>
</tr>
<tr>
<td>3748</td>
<td>39.5</td>
<td>2.1</td>
<td>36.5</td>
</tr>
<tr>
<td>3798</td>
<td>36.8</td>
<td>2.0</td>
<td>36.5</td>
</tr>
<tr>
<td>3848</td>
<td>35.2</td>
<td>1.9</td>
<td>36.9</td>
</tr>
<tr>
<td>3898</td>
<td>36.9</td>
<td>2.0</td>
<td>37.1</td>
</tr>
<tr>
<td>3948</td>
<td>36.9</td>
<td>2.0</td>
<td>37.5</td>
</tr>
<tr>
<td>3998</td>
<td>37.3</td>
<td>2.0</td>
<td>37.9</td>
</tr>
<tr>
<td>4048</td>
<td>40.6</td>
<td>2.7</td>
<td>38.6</td>
</tr>
<tr>
<td>4098</td>
<td>39.5</td>
<td>2.7</td>
<td>39.4</td>
</tr>
<tr>
<td>4148</td>
<td>39.7</td>
<td>2.6</td>
<td>40.4</td>
</tr>
<tr>
<td>E_p (keV)</td>
<td>σ (mb/sr)</td>
<td>$\Delta \sigma$ (mb/sr)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>24.3</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>19.0</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>591</td>
<td>12.9</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>692</td>
<td>6.6</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>953</td>
<td>7.2</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>973</td>
<td>4.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>993</td>
<td>2.1</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>1294</td>
<td>16.8</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>1345</td>
<td>26.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>1395</td>
<td>26.3</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>1445</td>
<td>23.8</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>1545</td>
<td>27.1</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>1595</td>
<td>29.0</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>1645</td>
<td>28.1</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>1695</td>
<td>28.7</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>1746</td>
<td>33.2</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>1796</td>
<td>19.0</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td>15.6</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>2096</td>
<td>15.8</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>2146</td>
<td>13.6</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>2196</td>
<td>12.5</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>2246</td>
<td>10.1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>2296</td>
<td>8.8</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>2346</td>
<td>6.1</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>2397</td>
<td>4.4</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>2447</td>
<td>2.8</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>2947</td>
<td>5.0</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>2997</td>
<td>5.5</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>3047</td>
<td>6.5</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>3097</td>
<td>4.5</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>3147</td>
<td>5.1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>3197</td>
<td>5.3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>3247</td>
<td>6.4</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>3297</td>
<td>7.6</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>3347</td>
<td>10.0</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>3397</td>
<td>10.7</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>3447</td>
<td>8.4</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>3497</td>
<td>7.8</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>3547</td>
<td>8.0</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>3597</td>
<td>9.5</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>3647</td>
<td>10.9</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>3698</td>
<td>11.0</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>3748</td>
<td>11.3</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>3798</td>
<td>11.2</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>3848</td>
<td>8.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>3898</td>
<td>12.1</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>3948</td>
<td>9.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>3998</td>
<td>11.5</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>4048</td>
<td>11.3</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>4098</td>
<td>10.6</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>4148</td>
<td>13.2</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>E_p (keV)</td>
<td>σ (mb/sr)</td>
<td>$\Delta\sigma$ (mb/sr)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>23.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>7.8</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>591</td>
<td>8.1</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>692</td>
<td>8.8</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>792</td>
<td>9.8</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>812</td>
<td>10.3</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>833</td>
<td>11.1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>853</td>
<td>11.3</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>873</td>
<td>11.3</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>893</td>
<td>12.4</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>913</td>
<td>12.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>933</td>
<td>13.0</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>953</td>
<td>12.1</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>973</td>
<td>9.5</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>993</td>
<td>8.1</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>1013</td>
<td>7.1</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>1033</td>
<td>6.8</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>1054</td>
<td>6.9</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>1074</td>
<td>6.9</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>1094</td>
<td>7.5</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>1114</td>
<td>7.6</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>1134</td>
<td>7.7</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>1154</td>
<td>8.3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>1174</td>
<td>8.3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>1194</td>
<td>8.9</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>1244</td>
<td>10.6</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1294</td>
<td>10.0</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1
Figure 2
Figure 3
Figure 4.
Figure 5.
Figure 6
Figure 7
Figure 8