Structure of a Human 4E-T/DDX6/CNOT1 Complex Reveals the Different Interplay of DDX6-Binding Proteins with the CCR4-NOT Complex

Graphical Abstract

Highlights
- DDX6 binds 4E-T, Pat1, and Edc3 using the same surfaces on the RecA2 domain
- DDX6 can bind 4E-T and the CNOT1 subunit of the CCR4-NOT complex simultaneously
- CNOT1 MIF4G binding impairs the interaction of DDX6 with Edc3 and Pat1 in vitro
- Localized electrostatic effects regulate the binding of related factors to CCR4-NOT

Authors
Sevim Ozgur, Jérôme Basquin, Anastasiia Kamenska, Witold Filipowicz, Nancy Standart, Elena Conti

Correspondence
conti@biochem.mpg.de

In Brief
Ozgur et al. show that 4E-T CHD binds DDX6 through the same surface as Edc3 and Pat1. However, only 4E-T can bind DDX6 together with the CNOT1 MIF4G domain. These findings provide insights into the complex network of interactions in DDX6-mediated translational repression.

Accession Numbers
5ANR
Structure of a Human 4E-T/DDX6/CNOT1 Complex Reveals the Different Interplay of DDX6-Binding Proteins with the CCR4-NOT Complex

Sevim Ozgur, Jérôme Basquin, Anastasiia Kamenska, Witold Filipowicz, Nancy Standart, and Elena Conti*

INTRODUCTION

The DEAD-box protein DDX6 is a central component of translational repression mechanisms in maternal mRNA storage in oocytes and microRNA-mediated silencing in somatic cells. DDX6 interacts with the CCR4-NOT complex and functions in concert with several post-transcriptional regulators, including Edc3, Pat1, and 4E-T. We show that the conserved CUP-homology domain (CHD) of human 4E-T interacts directly with DDX6 in both the presence and absence of the central MIF4G domain of CNOT1. The 2.1-Å resolution structure of the corresponding ternary complex reveals how 4E-T CHD wraps around the RecA2 domain of DDX6 and contacts CNOT1. Although 4E-T CHD lacks recognizable sequence similarity with Edc3 or Pat1, it shares the same DDX6-binding surface. In contrast to 4E-T, however, the Edc3 and Pat1 FDF motifs dissociate from DDX6 upon CNOT1 MIF4G binding in vitro. The results underscore the presence of a complex network of simultaneous and/or mutually exclusive interactions in DDX6-mediated repression.

SUMMARY

The DEAD-box protein DDX6 is a central component of translational repression mechanisms in maternal mRNA storage in oocytes and microRNA-mediated silencing in somatic cells. DDX6 interacts with the CCR4-NOT complex and functions in concert with several post-transcriptional regulators, including Edc3, Pat1, and 4E-T. We show that the conserved CUP-homology domain (CHD) of human 4E-T interacts directly with DDX6 in both the presence and absence of the central MIF4G domain of CNOT1. The 2.1-Å resolution structure of the corresponding ternary complex reveals how 4E-T CHD wraps around the RecA2 domain of DDX6 and contacts CNOT1. Although 4E-T CHD lacks recognizable sequence similarity with Edc3 or Pat1, it shares the same DDX6-binding surface. In contrast to 4E-T, however, the Edc3 and Pat1 FDF motifs dissociate from DDX6 upon CNOT1 MIF4G binding in vitro. The results underscore the presence of a complex network of simultaneous and/or mutually exclusive interactions in DDX6-mediated repression.
and Coller, 2013; Russell et al., 2013). It features the characteristic tandem of RecA-like domains (RecA1 and RecA2) but also has the unusual property of existing primarily in an autoinhibited conformation that can bind RNA in a non-productive, ATP-independent manner (Cheng et al., 2005; Dutta et al., 2011; Sharif et al., 2013). DDX6 coats repressed mRNA and has a potential to oligomerize (Ernoult-Lange et al., 2012). The ATPase activity of DDX6 is stimulated upon binding to the central MIF4G domain of CNOT1, which primes DDX6 toward its active conformation (Mathys et al., 2014). DDX6 activity is essential for mRNA silencing (Chen et al., 2014; Mathys et al., 2014; Rouya et al., 2014) and for P-body assembly (Minshall et al., 2009; Ozgur and Stoecklin, 2013). Paradoxically, the RecA2 domain alone is sufficient for translational repression in tethering assays (Minshall et al., 2009). This may be a consequence of the RecA2 domain of DDX6 having the ability to interact with other regulatory proteins. Edc3 and the Edc3-related protein Lsm14 (also known as Tral, Scd6, or RAP55) interact with DDX6 RecA2 through their Phe-Asp-Phe (FDF) motifs (Tritschler et al., 2008). In turn, Edc3 and Lsm14 directly bind and activate the decapping complex, DCP1-DCP2 (Fromm et al., 2012; Nissam et al., 2010; Tritschler et al., 2008). DDX6 also uses the same Edc3/Lsm14-binding surface to interact with Pat1 (Sharif et al., 2013), another modulator of mRNA stability and translation (Marnef and Standaert, 2010).

Several lines of evidence point to 4E-T (eIF4E transporter) as a key translational repressor closely connected to DDX6. Biochemical studies in early Xenopus oocytes have shown that 4E-T co-purifies with Xp54/DDX6, Pat1, Lsm14, and the cap-binding protein elf4E as part of a messenger RNP (mRNP) that stores silenced maternal mRNAs (Minshall et al., 2007). The D. melanogaster and C. elegans orthologs (CUP and IFET-1) also function as translational repressors acting in early development (Nakamura et al., 2004; Nelson et al., 2004; Sengupta et al., 2013). Similarly, 4E-T represents an essential component of the translation repressive complex in mouse neuronal progenitors (Yang et al., 2014). In tether-fusion studies, human 4E-T and Drosophila CUP inhibit the translation of reporter mRNAs to a level comparable to that of DDX6 (Ferraiuolo et al., 2005; Igreja and Izaurralde, 2011; Kamenska et al., 2014a). This protein family contains a canonical elf4E-binding motif, analogous to that used by a diverse group of translational repressors for sequestering elf4E, disrupting the elf4E complex and impairing translation initiation (Kamenska et al., 2014b). Surprisingly, however, 4E-T and CUP can exert their repressive activity even independently from elf4E (Igreja and Izaurralde, 2011; Kamenska et al., 2014a). The mechanism underlying 4E-independent translational repression is currently unclear. Here, we used biochemical and structural approaches to understand how DDX6 might function, together with 4E-T, in the context of the CCR4-NOT complex and of the DDX6-binding proteins Edc3 and Pat1.

RESULTS AND DISCUSSION

The Conserved CHD Region of 4E-T Interacts with the RecA2 Domain of DDX6

4E-T and DDX6 are found together spatially and temporally in different biological contexts (Kamenska et al., 2014b; Presnyak and Coller, 2013). We performed co-immunoprecipitation (co-IP) assays in human HEK293T cells. We transiently expressed yellow fluorescent protein (YFP)-tagged 4E-T and hemagglutinin (HA)-tagged DDX6, either wild-type or mutants (Figure 1B), and used GFP-binder beads for the precipitations. In these assays, DDX6 interacted with 4E-T (Figure 1B). The RecA2 domain of DDX6 is an interaction hotspot for different proteins. It contains an FDF-binding surface (the so-called patch 1 surface) that binds the FDF motifs of Edc3, Lsm14, and Pat1. Two other surfaces of DDX6 (known as patch 2 and patch 3) are also engaged in interactions with Edc3-related proteins and/or Pat1 (Sharif et al., 2013; Tritschler et al., 2009). We tested DDX6 mutants known to disrupt the interaction with both Edc3 and Pat1, namely, mutations in patch 1 (DDX6mut1) and patch 3 (DDX6mut3) (Sharif et al., 2013; Tritschler et al., 2009). We found that both abolished the interaction with 4E-T (Figure 1B). The RecA2 domain of DDX6 also interacts with CNOT1 (Chen et al., 2014; Mathys et al., 2014; Rouya et al., 2014). We tested a single amino acid substitution in DDX6 (DDX6mil3) that is known to abrogate binding to CNOT1 (Mathys et al., 2014). Importantly, DDX6mil3 did not affect the DDX6 interaction with 4E-T (Figure 1B). We concluded that the Edc3/Pat1-binding surfaces in the RecA2 domain of DDX6 are required for the interaction with 4E-T, while the CNOT1-binding surface of DDX6 is dispensable.

Human 4E-T is predicted to be largely unstructured. Besides the 4E-binding motif at the N terminus of the molecule (Dostie et al., 2000; Ferraiuolo et al., 2005) and a P-body localization region at the C terminus (Kamenska et al., 2014a), the most striking feature at the sequence level is a short segment that is highly conserved in the 4E-T family of proteins and has been termed the CUP-homology domain (CHD; residues 208–240) (Kamenska et al., 2014a) (Figure 1A). Another interesting region in the sequence of 4E-T is between residues 302 and 328, as it features an FDF-like motif (discussed later). Although the experiments in Figure 1B suggested that 4E-T is recognized at the FDF-binding site, a mutant of 4E-T whereby the FDF-containing motif had been removed still retained the ability to interact with DDX6 in co-IP assays (Figure 1C, 4E-TFDF mutant). Counterintuitively, removal of the CHD, which does not contain a recognizable FDF motif, decreased DDX6 binding to a larger extent (Figure 1C, 4E-T_{ΔCHD} mutant). Removal of both the CHD and FDF-like motifs of 4E-T had an additive effect in impairing the DDX6 interaction (Figure 1C). We concluded that the CHD is a major DDX6-binding segment of 4E-T. We note that the laboratory of Marc Fabian independently reached a similar conclusion in a recent paper (Nishimura et al., 2015) that was published while this manuscript was being reviewed.

Structure of the Ternary Complex of 4E-T CHD, DDX6, and CNOT1 MIF4G

We recapitulated the interactions observed in co-IP assays using in vitro reconstitutions with purified recombinant proteins. Human 4E-T CHD was co-expressed with the RecA2 domain of DDX6, and the two proteins were co-purified, forming a binary complex in size exclusion chromatography (Figure S1). Next, we tested the interaction with CNOT1. To this end, we co-expressed and co-purified a binary complex of 4E-T CHD and a DDX6 fragment containing both RecA domains (hereinafter referred to as...
DDX6 core, or DDX6c, and incubated it with a CNOT1 fragment encompassing the central MIF4G domain (hereinafter referred to as CNOT1 MIF4G). The three proteins co-eluted in size-exclusion chromatography, forming a 1:1:1 complex (Figure 1D). We determined the crystal structure of the 4E-T CHD/DDX6c/CNOT1 MIF4G complex to a 2.1 Å resolution and refined it to an R_free of 23.2%, an R_factor of 19.3%, and good stereochemistry (Table 1). The final model includes residues 216–238 of 4E-T, residues 95–462 of DDX6, and residues 1065–1309 of CNOT1.

The structure of the DDX6c/CNOT1 MIF4G portion of the ternary complex is similar to that of the binary complex previously described (Mathys et al., 2014). The MIF4G of CNOT1 has a crescent shape with a core that is formed by five tandem HEAT repeats. The convex surface of CNOT1 MIF4G that is used to interact with Caf1 (Basquin et al., 2012; Petit et al., 2012) is exposed to solvent (Figure 2, left panel). The concave surface of CNOT1 MIF4G faces DDX6c and uses the first and last HEAT repeats of the crescent to contact the RecA2 and RecA1 domains, respectively (Figure 2, left panel). Each RecA domain of DDX6c is formed of a flat, parallel β sheet sandwiched between two layers of α helices. The bottom of RecA2 (defined as the surface where the parallel β strands start) interacts with the B helix of MIF4G HEAT 1 using a pocket centered at DDX6 Arg386 (the residue substituted in the mif3 mutant discussed earlier). RecA1 contacts CNOT1 MIF4G at the B helix of HEAT 5 (Figure 2, left panel).

In the structure of the ternary 4E-T/DDX6c/CNOT1 MIF4G complex, the two RecA domains of DDX6c face each other and are separated by ~10 Å. This conformation is essentially identical to that of the binary DDX6c/CNOT1 MIF4G complex and is similar to the conformation adopted by the DEAD-box proteins elf4A and Dbp5 when in complex with their MIF4G partners, elf4G and Gle1 (Mathys et al., 2014; Montpetit et al., 2011; Schütz et al., 2008). As previously observed, this

Figure 1. The 4E-T CHD Motif Interacts with the RecA2 Domain of DDX6

(A) Schematic representation of the domain arrangements of human DDX6 and 4E-T. In color are the portions of the molecules characterized in this study. The DEAD-box protein DDX6 has the two characteristic RecA domains (in blue). Within 4E-T, the CHD (residues 208–240, in magenta) and the FDF motif similar to that in Edc3 or Pat1 (FDF, residues 302–328, in pink) provide major and minor DDX6-binding sites, respectively. In light and dark gray are two other regions of 4E-T that have been previously characterized, namely, the N-terminal elf4E-binding site and the C-terminal P-body localization site, respectively.

(B) Co-IP assays of *H. sapiens* HA-DDX6 with YFP-4E-T (in 150 mM NaCl). Wild-type and mutants were transiently transfected in HEK293T cells. Cell lysates (input) were immunoprecipitated with GFP binder, and eluted HA- and YFP-tagged proteins were detected by western blotting. DDX6mut1 (Q320A, H323A, T327A and R331A) impairs the FDF-binding site used for binding Pat1 and Edc3. DDX6mut3 (S343D, Q345D, and R346D) impairs a surface patch used for Pat1, but not Edc3, binding. DDX6mif3 (R386E) impairs CNOT1 binding. For the inability of these mutants to pull down Pat1, Edc3, or CNOT1, see Mathys et al. (2014), Sharif et al. (2013), and Tritschler et al. (2009).

(C) Co-IP of YFP-tagged 4E-T (either wild-type or mutants) with HA-tagged DDX6. The IP was done as described above, except that higher NaCl concentration (300 mM) was used in washes to better compare the relative contributions of the CHD and FDF motifs toward DDX6 binding. The deletion mutants 4E-T_DCHD, 4E-T_DFDF, and 4E-T_DCHD_DFDF lack residues 208–240, 302–328, and 208–240 and 302–328, respectively.

(D) DDX6c/4E-T interaction with recombinant proteins. DDX6c (residues 95–469) was co-expressed with the 4E-T CHD region (detailed in A), purified, and analyzed by size exclusion chromatography in the absence (peak 1) or presence (peak 2) of the CNOT1 MIF4G domain (Superdex 75, PC 3.2/300 column, GE Healthcare; exclusion volume, 0.8 ml). On the left are the overlays of the chromatograms (mAU and Mr denote relative absorbance and retention volume of the proteins, respectively). On the right is the Coomassie-stained SDS-PAGE gel with the samples from the corresponding peak fractions. Star indicates contamination.

See also Figure S1.
conformation approaches the structure that DEAD-box proteins adopt when in the active state (Mathys et al., 2014; Montpetit et al., 2011; Schultz et al., 2008) (Figure 2, right panel). In the active state, RNA is expected to bind in a shallow surface groove near the top surfaces of the two RecA domains, while ATP is expected to bind in a deep wedge on the opposite side of the molecule (Ozgur et al., 2015). 4E-T zig-zags around the N-terminal helical layer of RecA2 and contacts CNOT1 MIF4G.

4E-T CHD Interacts with DDX6 at the Same Hydrophobic Pockets Used by Edc3 and Pat1

4E-T CHD binds DDX6C in an extended conformation, burying more than 1,000 Å² of solvent-exposed area. The interaction is mediated by evolutionarily conserved amino acids (Figure 3A). Two hydrophobic residues of 4E-T (Ile233 and Leu235) bind the patch 1 surface of DDX6C via Van der Waals contacts with Cys324, Ile435, and Leu328 (Figure 3B, upper panel). 4E-T Ile233 and Leu235 are part of an IEL sequence motif and occupy the equivalent positions of the two phenylalanine side chains in the FDF motifs of Edc3-related and Pat1 proteins (Figure 3B; Figure S2). In addition, the negatively charged residue in the IEL motif (Glu234) forms a salt bridge with DDX6C Arg331. Proceeding toward the C terminus of the CHD, 4E-T Phe238 binds part of the patch 2 surface of DDX6C via Van der Waals contacts with Tyr315. Edc3 orthologs from both human and yeast feature a phenylalanine residue at the equivalent position of 4E-T Phe238. However, the two proteins use different structural elements to cover the distance between patch 1 and patch 2 (an α-helix and a short glycan-containing segment, respectively) (Figure 3B; Figure S2).

Proceeding from the IEL motif toward the N terminus of the CHD, the 4E-T polypeptide chain makes a turn and wedges between two helices of RecA2, contacting CNOT1. Here, in addition to backbone-mediated interactions, the aliphatic portion of 4E-T Gln229 packs against the side chain of CNOT1 Phe1096. The 4E-T chain then folds into a short coil and inserts the side chains of Trp221 and Phe222 to interact with the patch 3 surface of DDX6C (formed by E318, H323, R346, L349, and K353) (Figure 3B). Both Edc3 and Pat1 orthologs feature a large aromatic residue at the equivalent position of 4E-T Trp221 (Figure 3B; Figure S2). Finally, at the N terminus of the CHD, a cluster of negatively charged amino acids binds near the top surface of the RecA2 domain (Figure 3B).

We concluded that 4E-T uses non-canonical sequence motifs to bind the same apolar pockets of DDX6C that are used for recognizing Edc3, Lsm14, and Pat1, rationalizing the effect of the DDX6 mutants shown in Figure 1B. Also, consistent with the structural analysis, 4E-T substitutions of Trp221Ala (4E-TW221A) or Trp221Ala (4E-TW221A) impaired DDX6 binding in co-IP assays (Figure 3C).

Flanking Residues in the FDF-like Motifs of DDX6-Binding Proteins Regulate the Interaction with CNOT1 MIF4G

The DDX6-binding domains of human Edc3 (residues 170–211) and Pat1 (residues 13–50) have been previously established (Sharif et al., 2013; Tritschler et al., 2009). We purified the corresponding Edc3/DDX6C and Pat1/DDX6C complexes and proceeded to add CNOT1 MIF4G. Unexpectedly, binding of CNOT1 MIF4G to DDX6C resulted in the dissociation of both Edc3 and Pat1 (Figures 4A and 4B). Careful comparison of the available structures of DDX6-bound complexes pointed to an interesting difference. In the case of 4E-T, the residue preceding the IEL motif is a conserved polar residue (Thr232), pointing toward a conserved negatively charged amino acid of CNOT1 (Glu1092) (Figure 4C). In the case of Edc3, Lsm14, and Pat1, the FDF motif is preceded by a conserved negatively charged residue (Asp203 for yeast Edc3, for example) (Figure 4C). Structural superpositions suggested that a negatively charged side chain at this position would result in electrostatic unfavorable interactions with CNOT1 Glu1092. To test this prediction, we engineered a Thr232Asp (T232D) substitution in 4E-T. In vitro, addition of CNOT1 MIF4G to the 4E-T T232D/DDX6C complex indeed displaced 4E-T (Figure 4D), suggesting that seemingly small differences in the sequence of different DDX6-binding proteins allow or disfavor binding when complexed with CNOT1 MIF4G. We note, however, that because of the multidomain organization of 4E-T and CNOT1 and their involvement in complex networks of protein-protein and protein-RNA interactions, there might be additional direct or indirect interaction sites outside the CNOT1 MIF4G. Indeed, the interaction of full-length 4E-T with
full-length CNOT1 was unaffected by the T232 substitution in 4E-T (Figure S3). This finding is consistent with recent observations of Nishimura et al. (2015) that the interaction of 4E-T with either DDX6 or CNOT1 can also be affected, either positively or negatively, by additional proteins such as Lsm14 and Pat1 (via their interaction with DDX6) or TTP (via its interaction with CNOT1). Furthermore, treatment of samples with RNase A during the co-IP assays resulted in stronger interaction with CNOT1 and reduced the DDX6 interaction (Figure S3). This observation suggests, despite the direct interaction between 4E-T CHD and DDX6, mRNA has an important role in rearranging these interactions in vivo.

Conclusions

DDX6 functions in a wide range of translational repression pathways that ultimately lead to either mRNA degradation (e.g., in miRNA-mediated gene silencing) or mRNA storage (e.g., in germline and neuronal granules). It is currently thought that the different outcomes of translation repression might depend on the factors DDX6 binds to (Presnyak and Coller, 2013). Although DDX6 is similar to other DEAD-box proteins in terms of sequence and fold, it has distinctive surface features that underpin the direct interaction with specific regulatory proteins. One of the interacting proteins is the CNOT1 core subunit of the CCR4-NOT complex. Furthermore, treatment of samples with RNase A during the co-IP assays resulted in stronger interaction with CNOT1 and reduced the DDX6 interaction (Figure S3). This observation suggests that, despite the direct interaction between 4E-T CHD and DDX6, mRNA has an important role in rearranging these interactions in vivo.

Conclusions

DDX6 functions in a wide range of translational repression pathways that ultimately lead to either mRNA degradation (e.g., in miRNA-mediated gene silencing) or mRNA storage (e.g., in germline and neuronal granules). It is currently thought that the different outcomes of translation repression might depend on the factors DDX6 binds to (Presnyak and Coller, 2013). Although DDX6 is similar to other DEAD-box proteins in terms of sequence and fold, it has distinctive surface features that underpin the direct interaction with specific regulatory proteins. One of the interacting proteins is the CNOT1 core subunit of the CCR4-NOT complex. Furthermore, treatment of samples with RNase A during the co-IP assays resulted in stronger interaction with CNOT1 and reduced the DDX6 interaction (Figure S3). This observation suggests that, despite the direct interaction between 4E-T CHD and DDX6, mRNA has an important role in rearranging these interactions in vivo.

Conclusions

DDX6 functions in a wide range of translational repression pathways that ultimately lead to either mRNA degradation (e.g., in miRNA-mediated gene silencing) or mRNA storage (e.g., in germline and neuronal granules). It is currently thought that the different outcomes of translation repression might depend on the factors DDX6 binds to (Presnyak and Coller, 2013). Although DDX6 is similar to other DEAD-box proteins in terms of sequence and fold, it has distinctive surface features that underpin the direct interaction with specific regulatory proteins. One of the interacting proteins is the CNOT1 core subunit of the CCR4-NOT complex. Furthermore, treatment of samples with RNase A during the co-IP assays resulted in stronger interaction with CNOT1 and reduced the DDX6 interaction (Figure S3). This observation suggests that, despite the direct interaction between 4E-T CHD and DDX6, mRNA has an important role in rearranging these interactions in vivo.
only 4E-T (but neither Edc3 nor Pat1) would be able to bind DDX6 in the ATPase-competent conformation that is triggered by the interaction with the CNOT1 MIF4G domain. Finally, 4E-T is expected to interact not only with DDX6 and, indirectly, CNOT1 MIF4G via the CHD region but also with eIF4E cap-binding proteins via the N-terminal region and, as shown by Nishimura et al. (2015), with Pat1 and Lsm14 through other protein regions. The concomitant presence of multiple repressive complexes would provide redundancy and reinforce the robustness of translational repression.

Demonstration that 4E-T can associate with DDX6, even when the latter is in complex with the CNOT1 MIF4G, makes 4E-T a plausible candidate for the downstream effector in the GW182/CCR4-NOT/DDX6 axis, which functions in mediating translational repression by miRNAs. A role of DDX6 in repression of protein synthesis in the absence of mRNA deadenylation and/or decay, regardless of whether DDX6 is recruited to mRNA by the miRNA machinery or by direct tethering, is well documented (Carroll et al., 2011; Mathys et al., 2014; Minshall and Standart, 2004; Minshall et al., 2009; Presnyak and Coller, 2013). Likewise, 4E-T can inhibit protein synthesis in the absence of apparent mRNA degradation when tethered to mRNA, and, more importantly, its depletion was recently found to compromise repression of the miRNA reporter in human cells (Kamenska et al., 2014a). 4E-T was also identified as the translational repressor acting downstream of CNOT1 and DDX6 in Xenopus oocytes (Waghray et al., 2015). In addition to its documented role in repression of translation, 4E-T has been shown to enhance decay of mRNAs bearing the 3'-UTR AU-rich elements (Ferraiuolo et al., 2005). The recent study of Nishimura et al. (2015) demonstrated that 4E-T, working together with DDX6 and CCR4-NOT, promotes mRNA decay by bridging the Lsm1-7/Pat1 complex associated with the mRNA 3' terminus with the elf4E bound to the 5' cap. In the future, it will be
important to understand how the similar sets of factors, including proteins of the CCR4-NOT/DDX6/4E-T axis, are programmed to either inhibit translation or mediate mRNA decapping and decay. Likewise, it will be essential to establish the exact role of the CCR4-NOT/DDX6/4E-T pathway in translational silencing.

EXPERIMENTAL PROCEDURES

Protein Purification and Binding Assays

The expression vectors and purification protocols for human DDX6C (residues 95–469) and CNOT1 MIF4G domain (residues 1063–1314) were previously described (Mathys et al., 2014). Human 4E-T (residues 199–240) was cloned in a SUMO-tagged vector and co-expressed with DDX6 in BL21(DE3) pLyS in Terrific Broth (TB) medium. The 4E-T/DDX6C complex was co-purified using nickel-based affinity chromatography and ion-exchange chromatography at pH 7.5 (heparin, GE Healthcare), followed by tag cleavage by SENP2 and size exclusion chromatography (Superdex 75). DDX6C/4E-T CHD was incubated with CNOT1 MIF4G in a 1:1 molar ratio and injected on a Superdex 75 in 20 mM Tris (pH 7.4), 250 mM NaCl, 1 mM DTT. Human Pat1 (residues 13–50), Edc3 (residues 170–211), and 4E-T (residues 199–240) mutant T232D were co-expressed with DDX6C using analogous vectors and protocols. The binding assays were performed by size exclusion chromatography as described for 4E-T.

Crystallization and Structure Determination

Crystallization was carried out at 4°C using the vapor diffusion method by mixing equal volumes of protein complex at 12 mg/ml and of crystallization buffer.

Co-IP Assays

Co-IP assays on Figure 1 were essentially performed as described previously (Sharif et al., 2013). For co-IP on Figure 3C, HEK293T cell lysates were incubated with anti-FLAG-M2 beads (Sigma Aldrich); after washing, bound proteins were eluted with SDS loading buffer. Western blotting analysis was performed with 15% SDS-PAGE. The following antibodies were used: rabbit anti-DDX6 (Bethyl Laboratories, A300-461A), Pat1b (Marnef and Standart, 2010), and mouse anti-FLAG (Sigma, F3165).

ACCESSION NUMBERS

The accession number for the coordinates and structure factors of the 4E-T CHD/DDX6C/CNOT1 MIF4G complex is PDB: 5ANR.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures and three figures and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.09.033.

AUTHOR CONTRIBUTIONS

S.O. and J.B. solved the structure and carried out the biochemical experiments in Figures 1, 2, and 4A–4D; A.K. carried out the experiment in Figure 3C; S.O. and J.B. solved the structure and carried out the biochemical experiment and critical reading of the manuscript. This study was supported by the Max Planck Gesellschaft, the European Commission (ERC Advanced Investigator Grant 294371 and Marie Curie ITN RPNnet), and grants from the Deutsche Forschungsgemeinschaft (DFG SFB646, SFB1035, GRK1721, FOR1680, and CIPSM to E.C.) and the Biotechnology and Biological Sciences Research Council (BBB40) to N.S.

ACKNOWLEDGMENTS

We thank the MPI Crystallization Facility for screenings and optimization and the beamline scientists at the SLS for excellent assistance with data collection. We also thank Hansruedi Mathys and members of our laboratories for discussions and critical reading of the manuscript. This work was supported by the Max Planck Gesellschaft, the European Commission (ERC Advanced Investigator Grant 294371 and Marie Curie ITN RPNnet), and grants from the Deutsche Forschungsgemeinschaft (DFG SFB646, SFB1035, GRK1721, FOR1680, and CIPSM to E.C.) and the Biotechnology and Biological Sciences Research Council (BBB40) to N.S.

REFERENCES

